Alexander Kappes LTP/PSI Colloquium Paul Scherrer Institut, 30. Sept Neutrinos on the rocks – Astronomy at the South Pole with IceCube
Alexander Kappes, LTP/PSI Colloquium, Paul Scherrer Institut, Overview The high-energy universe and introduction to neutrino astronomy The IceCube neutrino observatory Selected results from IceCube Glimpse into the future of neutrino astronomy
Alexander Kappes, LTP/PSI Colloquium, Paul Scherrer Institut, : Discovery of cosmic radiation Observations until 1912: -electroscopes discharge because of natural radiation in ground -prediction: Discharge decreases with increasing altitude Balloon experiments starting 1912: (Hess, Kolhörster) -discharge increases above ~1.5 km altitude strongly ! -conclusion: Ionising radiation from space Measurement of Victor Hess (1912)
Alexander Kappes, LTP/PSI Colloquium, Paul Scherrer Institut, Cosmic radiation (CR): Spectrum measured over 12 orders of magnitude in energy Power law, non thermal Particle radiation (mainly protons) But sources still unknown ! years later Cosmic ray spectrum energy (eV) Flux (GeV -1 m -2 s -1 sr -1 ) LHC
Alexander Kappes, LTP/PSI Colloquium, Paul Scherrer Institut, The high-energy universe Gamma-ray Bursts (GRB B, X-ray, SWIFT) Active Galactic Nuclei (artist’s view) Supernova remnants (SN1006, optical, radio, X-ray) Microquasars (artist’s view)
Alexander Kappes, LTP/PSI Colloquium, Paul Scherrer Institut, Accelerator (source) Shock fronts (Fermi acceleration) Objects with strong magnetic fields (pulsars, magnetars) Beam dump (production of secondary particles) Interaction with photon fields, matter Protons: pion decay Elektrons: inverse Compton scattering off photons e + γ → e + γ (TeV) Production of high-energy particles p + p(γ) → π ± + X μ + ν μ e + ν μ + ν e p + p(γ) → π 0 + X γ + γ (TeV)
Alexander Kappes, LTP/PSI Colloquium, Paul Scherrer Institut, Why neutrino astronomy? Neutrinos point back to the source Neutrinos travel cosmological distances Neutrinos escape also optical dense sources Neutrinos are a smoking-gun evidence for hadron acceleration Neutrinos provide complementary information to gamma-ray photons and protons
Alexander Kappes, LTP/PSI Colloquium, Paul Scherrer Institut, Detecting high-energy neutrinos muon νμνμ nuclear reaction cascade Time & position of hits μ (~ ν) trajectory Energy PMT amplitudes
Alexander Kappes, LTP/PSI Colloquium, Paul Scherrer Institut, Background: atmospheric muons and neutrinos p atmosphere cosmic rays μ νμνμ νμνμ cosmic background p μ νμνμ Flux from above dominated by atmospheric muons Neutrino telescopes mainly sensitive to neutrinos from below
Alexander Kappes, LTP/PSI Colloquium, Paul Scherrer Institut, Sky visibility in neutrinos Horizon above below
Alexander Kappes, LTP/PSI Colloquium, Paul Scherrer Institut, Neutrino telescope projects IceCube BaikalBaikal AntaresAntares NESTORNESTOR NEMONEMO
Alexander Kappes, LTP/PSI Colloquium, Paul Scherrer Institut, Sky coverage Visibility ANTARES (Mediterranean) > 75% 25% – 75% < 25% TeV gamma-ray sources Galactic extragalactic Visibility IceCube (South Pole) 100% 0%
Alexander Kappes, LTP/PSI Colloquium, Paul Scherrer Institut, The IceCube Neutrino Observatory
Alexander Kappes, LTP/PSI Colloquium, Paul Scherrer Institut, IceCube at the South Pole South Pole IceCube surface area
Alexander Kappes, LTP/PSI Colloquium, Paul Scherrer Institut, The IceCube observatory IceTop Air shower detector InIce 86 strings (5160 PMTs) Instrumented volume: 1 km 3 Current status: 79 strings deployed Deep Core densely instrumented central region (8 strings) m m Veto Volume
Alexander Kappes, LTP/PSI Colloquium, Paul Scherrer Institut, glass sphere (up to 600 bar) 10” photomultiplier (Hamamatsu) In-situ digitalization of signal Optical module: the eyes of IceCube
Alexander Kappes, LTP/PSI Colloquium, Paul Scherrer Institut, String installation
Alexander Kappes, LTP/PSI Colloquium, Paul Scherrer Institut, Ice properties Photon propagation in ice dominated by scattering λ abs ~100 m λ scat ~20 m Neutrino reconstruction sensitive to ice properties Ice properties very well measured
Alexander Kappes, LTP/PSI Colloquium, Paul Scherrer Institut, IceCube 40-string (data): ~ 1000 TeV cosmic ray muon bundle IceTop Surface Array
Alexander Kappes, LTP/PSI Colloquium, Paul Scherrer Institut, IceCube 40-string (data): ~ 300 TeV cosmic ray muon bundle
Alexander Kappes, LTP/PSI Colloquium, Paul Scherrer Institut, IceCube 40-string (data): ~ 1 TeV neutrino-induced muon
Alexander Kappes, LTP/PSI Colloquium, Paul Scherrer Institut, IC40:0.6 o for 1-10 PeV 0.9 o for TeV. IC86: 0.3 o for 1-10 PeV 0.5 o for TeV. ICRC 2009 Energy reconstruction in full IceCube log 10 (E muon ) (GeV) log 10 (E proxy ) Point spread function and energy proxy Neutrino angular resolution: 0.3˚ – 0.5˚ Muon energy resolution: ~ factor 2
Alexander Kappes, LTP/PSI Colloquium, Paul Scherrer Institut, No neutrino reference point-source to validate absolute pointing Use lack of atmospheric muons from Moon direction -Moon diameter 0.5° Angular resolution: -IceCube 80-strings < 1° The Moon shadow RA relative to moon position Dec rel. moon
Alexander Kappes, LTP/PSI Colloquium, Paul Scherrer Institut, Selected Results
Alexander Kappes, LTP/PSI Colloquium, Paul Scherrer Institut, IceCube 40-strings skymap (376 days) Equatorial coordinates Down-going muons Up-going neutrinos Down-going Northern sky Southern sky
Alexander Kappes, LTP/PSI Colloquium, Paul Scherrer Institut, IceCube (40 strings) full sky search Preliminary results from days exposure 36,900 events: 14,121 upgoing and 22,779 downgoing Maximum p-value 5.2×10 -6, seen in 18% of randomized sky maps Northern sky: atmospheric neutrino background Southern sky: atmospheric muon background demand high energy events Preliminary Arbitrary Scaling (E 2 d ϕ /dE) = -8° = -30° = -60° = +30° = +60° = +6° Upgoing (Northern sky) TeV–PeV Downgoing (Southern sky) PeV–EeV
Alexander Kappes, LTP/PSI Colloquium, Paul Scherrer Institut, E -2 Sensitivity: past, present, future MACRO SuperK AMANDA IceCube 40 IceCube 80 (predicted) IceCube 22 factor 1000 in 15 years ANTARES
Alexander Kappes, LTP/PSI Colloquium, Paul Scherrer Institut, Gamma-ray bursts (GRBs) TeV neutrinos PeV neutrinos EeV neutrinos –100 s T0T0 ~100 s> 1000 s
Alexander Kappes, LTP/PSI Colloquium, Paul Scherrer Institut, GRB B: the “naked-eye” GRB Detected by Swift satellite March 19, 06:12:49 UTC, RA = 217.9°, Dec = +36.3° - duration ~70 s Brightest (optical) GRB ever observed z = 0.94 (D A = 1.6 Gpc) No event observed in IceCube (9 strings) Pi-of-the-Sky (optical) Γ = 500 average GRB Γ = 1400 Neutrino spectrum GRB B Γ = 300 Abbasi et al., ApJ 701, 1721 (2009)
Alexander Kappes, LTP/PSI Colloquium, Paul Scherrer Institut, IceCube coincidence triggers optical follow-up -angular window 3.5° -time window 100 s Delay neutrino detection → start of optical observations: < 5 min Optical follow-up SN/GRB Institute in the North Optical telescopes Iridium IceCube
Alexander Kappes, LTP/PSI Colloquium, Paul Scherrer Institut, Observational program Kahn et al., 2006 t (days after burst) 1E Strizinger et al. (2003) magnitude t (days after burst) Prompt observation (first night): Search for fast decreasing GRB afterglow -10 short (5 s obs. time) -10 medium (20 s obs. time) -20 long (60 s obs. time) Follow-up observations (14 following nights): Slowly rising supernova light-curve -8 long (60 s obs. time) per night
Alexander Kappes, LTP/PSI Colloquium, Paul Scherrer Institut, Image processing – = „New“ „Reference“ Subtraction Automatic candidate selection Test of algorithms with simulated SN light-curve (SN light-curve model by P. Nugent (SN1999ex)) System successfully running since end of 2008 Data analysis underway Simulated SN light-curve extracted -mag. TUG, Turkey McDonald, Texas Limiting mag. Measured mag. time [days] T+0 T+10T+20T+30
Alexander Kappes, LTP/PSI Colloquium, Paul Scherrer Institut, Neutralino good WIMP candidate Gravitational capture in the Sun followed by self annihilation Neutrino rate only depends on scattering cross section (equilibrium between capture and annihilation) Sensitive to spin-dependent cross section Dark Matter searches (WIMPs) χ ν - ν
Alexander Kappes, LTP/PSI Colloquium, Paul Scherrer Institut, IceCube 86 with Deep Core Sensitivity 1 yr (prel., hard) WIMP searches Direct detection experiments (CDMS, COUPP, KIMS) Super-Kamiokande (2004) AMANDA 7 years soft hard IceCube 22-strings limits (PRL 102, (2009)) soft hard MSSM models }
Alexander Kappes, LTP/PSI Colloquium, Paul Scherrer Institut, Other topics for neutrino telescopes Point sources: -flaring sources (e.g. active galactic nuclei) -periodic sources (e.g. microquasars) → multimessenger astronomy Diffuse cosmic neutrino flux Supernovae (MeV neutrinos) Neutrino oscillation (atmospheric neutrinos GeV) Exotic physics (Lorentz-invariance violation, monopoles,...) Anisotropy of cosmic rays in the TeV range Particle interactions at high energies (prompt muons,...)
Alexander Kappes, LTP/PSI Colloquium, Paul Scherrer Institut, Glimpse into the Future of Neutrino Astronomy
Alexander Kappes, LTP/PSI Colloquium, Paul Scherrer Institut, IceCube: Compared to AMANDA (7 years) factor 25 higher sensitivity -larger detector + data quality -accumulation of data -improved analysis methods IceCube reaches regions with realistic discovery potential but IceCube will probably only scratch interesting region... and IceCube covers only half the sky Into the future Spiering, HGF review, 2009
Alexander Kappes, LTP/PSI Colloquium, Paul Scherrer Institut, KM3NeT Artist’s view Future cubic-kilometer scale neutrino telescope in the Mediterranean Sea (joint effort of ANTARES, NEMO, NESTOR) Exceeds Northern-hemisphere telescopes by factor ~50 in sensitivity Exceeds IceCube sensitivity by substantial factor Estimated costs: ~220 MEuro First data possibly in 2013/14 EU-funded Design Study (2006–09) and Preparatory Phase (2007–11) Supported by ESFRI, ASPERA, ASTRONET
Alexander Kappes, LTP/PSI Colloquium, Paul Scherrer Institut, Point source sensitivities (1 year) ANTARES: 1 yr (pred. sensitivity) Predicted fluxes Halzen, AK, O’Murchadha, PRD (2008) AK, Hinton, Stegmann, Aharonian, ApJ (2006) Kistler, Beacom, PRD (2006) Costantini & Vissani, App (2005)... KM3NeT: 1 yr (pred. sensitivity) KM3NeT IceCube 80: 1 yr (pred. sensitivity) ANTARES IceCube IceCube 40: 1 yr (sensitivity) 90% CL sensitivity for E -2 spectra (preliminary) Vision of a worldwide neutrino observatory (IceCube + KM3NeT) Detectors entering discovery region Large overlap region (enhanced sensitivity + cross check)
Alexander Kappes, LTP/PSI Colloquium, Paul Scherrer Institut, Summary Neutrinos provide complementary information to gamma-ray photons and protons about the high-energy universe Still waiting for detection of first cosmic high-energy neutrino IceCube (almost) completed -quantum leap in sensitivity to (cosmic) neutrinos > 1 TeV → advances into discovery region -provides data of fantastic quality -rich physics program Exciting times lie ahead of us ! The real voyage of discovery consists not in seeking new landscapes, but in having new eyes... Marcel Proust
Alexander Kappes, LTP/PSI Colloquium, Paul Scherrer Institut, Univ Alaska, Anchorage Clark-Atlanta University Georgia Tech Southern University, Baton Rouge UC Berkeley Lawrence Berkeley National Lab University of Maryland The Ohio State University UC Irvine University of Kansas University of Wisconsin-Madison U Delaware / Bartol Research Inst University of Wisconsin-River Falls Univ Alabama, Tuscaloosa Pennsylvania State University RWTH Aachen Humboldt Univ., Berlin Ruhr-Universität Bochum Universität Bonn Universität Dortmund MPI Heidelberg Universität Mainz Universität Wuppertal DESY, Zeuthen Stockholm University Uppsala University Chiba University Universite Libre de Bruxelles Vrije Universiteit Brussel Universiteit Gent Université de Mons Univ. of Canterbury, Christchurch University of Oxford The IceCube Collaboration 36 Institutions, ~250 members EPFL, Lausanne 41 U. of West Indies, Barbados University of Alberta