Class Project Report Sustainable Air Quality, EECE 449/549, Spring 2008 Washington University, St. Louis, MO The Carbon Footprint of Danforth Campus and.

Slides:



Advertisements
Similar presentations
Public Engagement, Lifestyle Calculators & CO 2 Emissions Shui Bin and Hadi Dowlatabadi Center for Integrated Study of the Human Dimensions of Global Change,
Advertisements

Phoenix College Carbon Emissions Report. Scope of Project To determine, track, and potentially reduce: 1. Direct emissions from sources that are owned.
Class Project Report Sustainable Air Quality, EECE 449/549, Spring 2008 W ashington University, St. Loui, MO Carbon Footprint of Danforth Campus Instructors:
Washington University Danforth Campus Carbon Footprint: Using the Campus as a Living Laboratory E. M. Robinson, R. B. Husar, M. Malten Washington University,
Sustainable Development Linking Energy and the Environment Washington U. Carbon Impact Rudolf B. Husar & Erin Robinson Director, Center for Air Pollution.
Integrated SOx Emission Trend Estimation for the Sustainability Transition Students K. Miller, C. Reid, J. Agan, J. Reynolds Instructor Rudolf B. Husar.
Class Project Report, May 2003 ME/CE 449 Sustainable Air Quality Causality of US Sulfur Production and Emission Trends By James Agan, Kate Miller, Cat.
Class Project Report Sustainable Air Quality, EECE 449/549, Spring 2009 Washington University, St. Louis, MO Transportation Carbon Emissions Model - Midterm.
Class Project Report Sustainable Air Quality, EECE 449/549, Spring 2009 Washington University, St. Louis, MO The Energy Analysis and Carbon Footprint of.
GREENHOUSE GAS EMISSIONS INVENTORY REPORT 2009 Antioch University Seattle.
Class Project Report, Spring 2014 E 449/549 Sustainable Air Quality Sustainability Transition of Sulfurous Air Quality Emissions and Causality.
Class Project Report, Spring 2014 E 449/549 Sustainable Air Quality Sustainability Transition of Sulfurous Air Quality Emissions and Causality.
Class Project Report Sustainable Air Quality, EECE 449/549, Spring 2008 Washington University, St. Louis, MO The Carbon Footprint of Danforth Campus and.
Huddersfield University 21 May 2015 SUSTAINABLE AVIATION or HOW AIR TRANSPORT HAS CHANGED OUR WORLD…… FOR GOOD AND BAD How Air Transport Has Changed Our.
EECE 449/549 Sustainable Air Quality: Sustainable Linking of Energy and the Environment Rudolf B. Husar & Erin Robinson Department of Energy, Environmental.
DRAFT, April 24 –All data are preliminary, need verification Class Project Report Sustainable Air Quality, EECE 449/549, Spring 2008 Washington University,
Class Project Report Sustainable Air Quality, EECE 449/549, Spring 2008 Washington University, St. Louis, MO The Carbon Footprint of Danforth Campus and.
Class Project Report, Spring 2014 E 449/549 Sustainable Air Quality Sustainability Transition of Sulfurous Air Quality Emissions and Causality.
CLASS PROJECT REPORT SUSTAINABLE AIR QUALITY, EECE 449/549, SPRING 2010 WASHINGTON UNIVERSITY, ST. LOUIS, MO INSTRUCTORS: PROFESSOR RUDOLF B. HUSAR, ERIN.
Class Project Report Sustainable Air Quality, EECE 449/549, Spring 2009 Washington University, St. Louis, MO The Energy Analysis and Carbon Footprint of.
MAGEEP. Sustainable Development – Causality Loop Economic Development with Due Care of the Environment Systems approach: linking human activities and.
Class Project Report Sustainable Air Quality, EECE 449/549, Spring 2008 Washington University, St. Louis, MO The Carbon Footprint of Danforth Campus and.
Analysis Frameworks for Sustainability: Linking Energy and the Environment EECE Seminar, Friday, November 2, 2007, 11:00am, Lopata 101, Washington University.
Sustainability at NMSU A part of the integrated planning process.
Class Project Report Sustainable Air Quality, EECE 449/549, Spring 2009 Washington University, St. Louis, MO The Energy Analysis and Carbon Footprint of.
In Small Groups – 3/4 What is Industrial Metabolism? What is Industrial Ecology? What Is Ecological Intelligence? How do you think it applies to Wash.
Prof Roland Clift, Centre for Environmental Strategy (CES) Climate Change and Creating a Sustainable Future for Guildford Guildford Environmental Forum.
Group on Earth Observations (GEO) & Global Earth Observation System of Systems (GEOSS) A ten year GEOSS plan ( )
Class Project Report Sustainable Air Quality, EECE 449/549, Spring 2008 Washington University, St. Louis, MO The Carbon Footprint of Danforth Campus and.
Sensory-Motor Response to Changes Regardless whether the Earth is considered ‘healthy’ or ‘sick’, the inevitable and unforeseeable environmental changes.
Class Project Report Sustainable Air Quality, EECE 449/549, Spring 2008 Washington University, St. Louis, MO The Carbon Footprint of Danforth Campus and.
Class Project Report Sustainable Air Quality, EECE 449/549, Spring 2009 Washington University, St. Louis, MO Transportation Carbon Emissions Model - Midterm.
Class Project Report Sustainable Air Quality, EECE 449/549, Spring 2008 Washington University, St. Louis, MO The Carbon Footprint of Danforth Campus and.
Class Project Report Sustainable Air Quality, EECE 449/549, Spring 2008 W ashington University, St. Loui, MO Carbon Footprint of Danforth Campus Buildings.
Sustainable Development (NAS) A process of reconciling society’s developmental needs with the environmental limits over the long term. It includes differing.
Sustainable Development Linking Energy and the Environment Washington U. Carbon Impact Rudolf B. Husar & Erin Robinson Director, Center for Air Pollution.
© OECD/IEA INTERNATIONAL ENERGY AGENCY Worldwide Trends in Energy Use and Efficiency Key Insights from IEA Indicator Analysis ENERGY INDICATORS.
Carbon Footprint of the U.S. Population: Causes and Spatial-Temporal Pattern U.S. Residential Electricity Use Analysis Class Project Me/ENV 449, 2007 Nick.
Carbon Footprint of the U.S. Population: Causes and Spatial-Temporal Pattern Class Project Me/ENV 449, 4/30/2007 By: Louis Hsu Instructor: R. Husar Transportation.
Class Project Report Sustainable Air Quality, EECE 449/549, Spring 2008 Washington University, St. Louis, MO The Carbon Footprint of Danforth Campus and.
Class Project Report Sustainable Air Quality, EECE 449/549, Spring 2009 Washington University, St. Louis, MO Transportation Carbon Emissions Model - Midterm.
Class Project Report Sustainable Air Quality, EECE 449/549, Spring 2009 Washington University, St. Louis, MO The Energy Analysis and Carbon Footprint of.
In Small Groups – 3/4 What is Industrial Metabolism? What is Industrial Ecology? What Is Ecological Intelligence? How do you think it applies to Wash.
Class Project Report Sustainable Air Quality, EECE 449/549, Spring 2009 Washington University, St. Louis, MO The Energy Analysis and Carbon Footprint of.
Class Project Report Sustainable Air Quality, EECE 449/549, Spring 2009 Washington University, St. Louis, MO The Energy Analysis and Carbon Footprint of.
Class Project Report Sustainable Air Quality, EECE 449/549, Spring 2008 Washington University, St. Louis, MO The Carbon Footprint of Danforth Campus and.
Group on Earth Observations (GEO) & Global Earth Observation System of Systems (GEOSS) A ten year GEOSS plan ( )
DRAFT, April 14 –All data are preliminary, need verification Class Project Report Sustainable Air Quality, EECE 449/549, Spring 2008 Washington University,
Class Project Report, Spring 2014 E 449/549 Sustainable Air Quality Sustainability Transition of Sulfurous Air Quality Emissions and Causality.
Session 2 Buildings and Measurements. Buildings Sector Accounts for About 40% of U.S. Energy, 72% of Electricity, 34% of Natural Gas, 38% of Carbon, 18%
Carbon Footprint of the U.S. Population: Causes and Spatial-Temporal Pattern U.S. Residential Electricity Use Analysis Class Project Me/ENV 449, 2007 Nick.
Consequences of Ecosystem Changes. How and what to Control?? Analysis Framework III – Causality Loop Economic Development with Due Care of the Environment.
Class Project Report, May 2004 ME/ChE 449 Sustainable Air Quality Sustainability Transition, : Possible role of the Hydrogen Economy By Andrew.
Sustainable Development (NAS) A process of reconciling society’s developmental needs with the environmental limits over the long term. It includes differing.
Class Project Report Sustainable Air Quality, EECE 449/549, Spring 2008 Washington University, St. Louis, MO The Carbon Footprint of Danforth Campus and.
Class Project Report, May 2003 ME/CE 449 Sustainable Air Quality Causality of US Sulfur Production and Emission Trends By James Agan, Kate Miller, Cat.
Carbon Footprint of the U.S. Population: Causes and Spatial-Temporal Pattern U.S. Residential Electricity Use Analysis Class Project Me/ENV 449, 2007 Nick.
Residential/Commercial Carbon Emissions Nationally and on the Danforth Campus.
Washington University Transportation Emission Commuter Travel –Faculty/Staff –Students University Fleet Air Travel –Athletic Meets –Study Abroad –Faculty.
Class Project Report Sustainable Air Quality, EECE 449/549, Spring 2008 W ashington University, St. Loui, MO Carbon Footprint of Danforth Campus Buildings.
Class Project Report Sustainable Air Quality, EECE 449/549, Spring 2009 Washington University, St. Louis, MO Transportation Carbon Emissions Model - Midterm.
A Carbon Footprint Calculator for On-campus Students: Development and Education Jeremy Caves Maiella Leano; Jina Lee; Althea Tupper.
THE NELSON INSTITUTE CARBON FOOTPRINT PROJECT AASHE Conference November 11, 2008 Damon Clark Summit Blue Consulting Jeannette LeBoyer Econergy.
University of Toledo Climate Action Report Scope 1 By Rachel Beres, Andrew Kulikowski, Jon Lockie, Chad Pietkowski, Ken Samoei, and Cory Williams.
Science and the Environment Section 2 Ecolog 2. Science and the Environment Section 2 DAY 1 Chapter 1 Science and the Environment Section 2: The Environment.
Integrating Frameworks for Energy and Climate Policy Analysis. Professor Rudolf B. Husar, Director, Center for Air Pollution Impact and Trend Analysis,
Class Project Report, Spring 2014 E 449/549 Sustainable Air Quality Sustainability Transition of Sulfurous Air Quality Emissions and Causality.
Class Project Report Sustainable Air Quality, EECE 449/549, Spring 2008 W ashington University, St. Loui, MO Carbon Footprint of Danforth Campus Instructors:
Instructors: Professor Rudolf B. Husar, Erin M. Robinson
Combat Climate Change How to tackle it.
Presentation transcript:

Class Project Report Sustainable Air Quality, EECE 449/549, Spring 2008 Washington University, St. Louis, MO The Carbon Footprint of Danforth Campus and its Causality Drivers Instructors: Professor Rudolf B. Husar, Erin M. Robinson For more details see the class wikiclass wiki Students: Devki Desai Martin Groenewegen Tyler Nading Kate Nelson Matt Sculnick Alyssa Smith Varun Yadav

Class Project: Carbon Footprint of Danforth Campus Specific Objectives: 1.Develop and apply carbon emission estimation model 2.Estimate the carbon footprint of Danforth Campus 3.Establish the key causality drivers for the emissions 4.Compare the WU carbon emissions to other Universities

Main Components of WU Carbon Emissions: On Campus Energy Use in Buildings and Transportation The impact on carbon arises from on-campus energy use and from transportation On Campus Energy Use Carbon Impact Students Heating Cooling Appliances Faculty/Staff Transportation Carbon Impact Commuting Air Travel University Fleet

Trend ( ) of Hilltop Campus Building Area 60% increase During the period, the building area on the Danforth Campus has increased by about 60 percent. The 2006 Map of Danforth Campus The new buildings since 1990 are shaded black. Some of the new buildings have replaced old once.

Linear Causality Model for Campus Carbon Emissions The carbon impact of on-campus energy is due to direct fuel consumption and indirectly from electricity use The overall carbon impact for on campus energy consumption has increased 50% from Electricity use contributed about 80 percent to the on-campus carbon impact Population Students Activities $ Expend./yr Buildings Sq. Ft Fuel Cons. BTU/yr C Emission Ton C/yr Fuel Cons. BTU/yr C Emission Ton C/yr Electr. Cons Kw-Hr/yr $/StudentSq. Ft./$BTU/Sq.Ft. Kw-hr/Sq.Ft. BTU/Kw-hr Carbon/BTU

Hilltop Campus Medical Campus Total CO2 Emissions +50% -6% +24%

Total Emission Comparison between Universities In the class project, the published carbon emissions of 14 Universities were analyzed Evidently, the carbon emissions are roughly proportional to the campus building square footage. This class project data indicate that WU emissions/area are comparable to the other schools

Local Transportation Emission Comparison between Universities The transportation portion of carbon emissions indicate rough proportionality to school population Evidently, the WU transportation carbon emissions are also in line with other colleges. However, the WU estimates are uncertain and given as a range based on two calculation methods

Sustainable Development – Causality Loop Economic Development with Due Care of the Environment The system approach links human activities and their consequences in closed loop It is the minimum set of linked components – if any missing, the system is crippled Each component depends on its causal upstream driver – and external environment The causal loop is a useful organizing principle for sustainability analysis/ science.

Causality Drivers for Carbon Emission Change – Hilltop Campus The student population increased only by 10% since 1990 However, the expenditures/student have increased by 60 percent Hence, the key driver for the 60% carbon emission growth were the increased expenditures (prosperity) and the associated growth in the physical campus expansion.

Sustainable Development – Causality Loop What is the role of Sciences in Campus Carbon Emissions? Social Work – ? Political Science - ? Law - ? Economics - ? Biology - ? Engineering - ? Earth Science - ? Information Science - ?

Sustainability Transition for U.S. Sulfur Emissions