Palaiseau - FRANCE Spatio-Temporal Chirped Pulse Amplification for Avoiding Spectral Modifications in Ultra-Short Petawatt Lasers C. Radier1,2, F. Giambruno1,3,

Slides:



Advertisements
Similar presentations
1 Journées Scientifiques de lEDOM March 8, fs laser chain based on optical parametric chirped pulse amplification Lourdes Patricia Ramirez Equipe.
Advertisements

Vulcan Front End OPCPA System
Central Laser Facility
Femtosecond lasers István Robel
Development of a High-Energy Seed for Contrast Improvement of the Vulcan Laser Facility. Ian Musgrave, W. Shaikh, M. Galimberti, A. Boyle, K Lancaster,
1 LOA-ENSTA. 2 3 For PW class laser, a contrast better than is required I ASE has to be < W/cm² The ASE intensity is enough to generate.
Petawatt Field Synthesizer
Components of ultrafast laser system
Ariadna study : Space-based femtosecond laser filamentation Vytautas Jukna, Arnaud Couairon, Carles Milián Centre de Physique théorique, CNRS École.
Optimizing SHG Efficiency
P.M. Paul, L.Vigroux, G. Riboulet, F.Falcoz. 2 Main Limitation in High gain Amplifier: Gain Narrowing Ti:Sa Pockels cell FWHM
High energy, high repetition rate pump laser system for OPCPAs A.-L. Calendron 1,2,3, L. E. Zapata 1,4, H. Çankaya 1,2, H. Lin 4 and F. X. Kärtner 1,2,3,4.
CTF3 Laser Status Massimo Petrarca CLIC January
Generation of short pulses
Ultrafast Spectroscopy
Yb Fiber Laser System Xiangyu Zhou 19. Feb
Time-Bandwidth Products getting the average power of ultrafast DPSS lasers from hundreds of mW to tens of Watts by Dr. Thomas Ruchti CERN, April 2006 SESAM.
Ultrafast Experiments Hangwen Guo Solid State II Department of Physics & Astronomy, The University of Tennessee.
Single-shot characterization of sub-15fs pulses with 50dB dynamic range A. Moulet 1, S.Grabielle 1, N.Forget 1, C.Cornaggia 2, O.Gobert 2 and T.Oksenhendler.
Arbitrary nonparaxial accelerating beams and applications to femtosecond laser micromachining F. Courvoisier, A. Mathis, L. Froehly, M. Jacquot, R. Giust,
Formatvorlage des Untertitelmasters durch Klicken bearbeiten 1/26/15 1 kHz, multi-mJ Yb:KYW bulk regenerative amplifier 1 Ultrafast Optics and X-Ray Division,
High power ultrafast fiber amplifiers Yoann Zaouter, E. Cormier CELIA, UMR 5107 CNRS - Université de Bordeaux 1, France Stephane Gueguen, C. Hönninger,
DMP Product Portfolio Femtosecond Lasers Trestles Ti:Sapphire lasers …… fs; nm, mW Mavericks Cr:Forsterite lasers
DS3-DS4 Joint 1 st Task Meeting, Saclay 16 th -17 th May 2005 Matter under extremes conditions Femtosecond Laser Servers Laboratoire Francis Perrin SPAM.
The UCLA PEGASUS Plane-Wave Transformer Photoinjector G. Travish, G. Andonian, P. Frigola, S. Reiche, J. Rosenzweig, and S. Telfer UCLA Department of Physics.
A 5 fs high average power OPCPA laser system for attosecond pulse production Philip Bates, Yunxin Tang, Emma Springate and Ian Ross Central Laser Facility,
Max-Born-Institut M.Boyle, A.Thoß, N.Zhavaronkov, G.Korn Max Born Institute; Max-Born-Str. 2A, Berlin, Germany T.Oksenhendler, D. Kaplan Fastlite,
Yb:CaF 2 Diode-Pumped Regenerative Amplifier: Study and Optimization of Pulse Duration Versus Repetition Rate ICUIL, Watkins Glen, 26 th September-1 st.
CTF3 photo injector laser status CERN 17 July 2009 CLIC meeting.
30 Nov. 06 I.Will et al., Max Born Institute: Long trains of flat-top laser pulses Photocathode lasers generating long trains of flat-top pulses Ingo Will,
Intra-cavity Pulse Shaping of Mode-locked Oscillators Shai Yefet, Naaman Amer and Avi Pe’er Department of physics and BINA Center of nano-technology, Bar-Ilan.
Efficient scaling of output pulse energy in static hollow fiber compressors X. Chen, A. Malvache, A. Ricci, A. Jullien, R. Lopez-Martens ICUIL 2010, Watkins.
Yen-Yu Chang, Li-Chung Ha, Yen-Mu Chen Chih-Hao Pai Investigator Jypyng Wang, Szu-yuan Chen, Jiunn-Yuan Lin Contributing Students Institute of Atomic and.
C. Vicario LCLS ICW SLAC Oct. 9-11, THE DRIVE LASER: EXPERIENCE AT SPARC Carlo Vicario for SPARC collaboration.
Electro-Optic Bunch Profile Monitors DA Walsh, SP Jamison, WA Gillespie, MA Tyrk, R Pan, T Lefevre.
Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan National Taiwan University, Taiwan National Central University, Taiwan National Chung.
Nonlinear Optics in Plasmas. What is relativistic self-guiding? Ponderomotive self-channeling resulting from expulsion of electrons on axis Relativistic.
About the possibility to build a 10-PW femtosecond laser for ELI-NP till 2015 Razvan Dabu National Institute for Lasers, Plasma and Radiation Physics Bucharest.
MIT Optics & Quantum Electronics Group Seeding with High Harmonics Franz X. Kaertner Department of Electrical Engineering and Computer Science and Research.
Advancement in photo-injector laser: Second Amplifier & Harmonic Generation M. Petrarca CERN M. Martyanov, G. Luchinin, V. Lozhkarev Institute of Applied.
Yb:YAG Regenerative Amplifier for A1 Ground Laser Hut Rui Zhang ACCL Division V, RF-Gun Group Nov 20, 2015 SuperKEKB Injector Laser RF Gun Review.
Laser System Upgrade Overview
Ultrafast techniques Laser systems Ti:Saph oscillator/regen, modelocking NOPA’s Pump-probe absorption difference spectroscopy Two-color Dispersed detection.
TOWARD GENERATION OF HIGH POWER ULTRAFAST WHITE LIGHT LASER USING FEMTOSECOND TERAWATT LASER IN A GAS-FILLED HOLLOW-CORE FIBER Walid Tawfik Physics and.
Short pulse oscillator
Extreme Light Infrastructure in Romania: progress Daniel URSESCU Technical contact point for ELI in Romania INFLPR, Magurele, Romania.
Picosecond Pulse-Pumped Efficient Optical Parametric Amplifier for Non-Chirped Femtosecond Pulses Hua Yang Notes: 1.Simulations performed with 10 fs and.
Workshop for advanced THz and Compton X-ray generation
Drive Laser Introduction ‘ir’ master oscillator power amplifier chain (MOPA) uses standard chirped pulse amplification scheme (CPA) third harmonic generation.
Measurements of High-Field THz Induced Photocurrents in Semiconductors Michael Wiczer University of Illinois – Urbana-Champaign Mentor: Prof. Aaron Lindenberg.
BESTIA – the next generation ultra-fast CO 2 laser for advanced accelerator research Igor Pogorelsky Misha Polyanskiy, Marcus Babzien, John Skaritka, Ilan.
0 Frequency Gain 1/R 1 R 2 R 3 0 Frequency Intensity Longitudinal modes of the cavity c/L G 0 ( ) Case of homogeneous broadening R2R2 R3R3 R1R1 G 0 ( )
LASER SYSTEM STATUS G.Gatti, A. Ghigo, C.Vicario, P.Musumeci, M. Petrarca, S. Cialdi, D. Filippetto REVIEW COMMITTEE 16/11/05.
Date of download: 9/18/2016 Copyright © 2016 SPIE. All rights reserved. Schematic of the OPCPA laser system at Sandia National Laboratories. A stretched.
Yb:YAG Regenerative Amplifier for A1 Ground Laser Hut Rui Zhang ACCL Division V, RF-Gun Group Nov 20, 2015 SuperKEKB Injector Laser RF Gun Review.
Status of the SPARC laser and “dazzler” experiments
Outline ATF’s Terawatt CO2 laser overview BESTIA concept (as presented at AAC ’14) Progress since AAC ’14 Current vision of the roadmap to 100 TW.
Laser System Upgrade Overview
Ultrashort (few cycles) Pulse Generation in (IR-THz) FELs
High power high energy ultrafast fiber amplifiers
Two color FEL experiment
A generic ultrashort-pulse laser
Business Development Manager, Bucarest 2011
Principle of Mode Locking
Dana Tovey, Sergei Tochitsky, Eric Welch, Chan Joshi
Kansas Light Source Upgrade
Kansas Light Source Laser System J. R. Macdonald Laboratory
LASER SYSTEM STATUS G.Gatti , A. Ghigo , C.Vicario , P.Musumeci ,
LCLS Injector Laser System Paul R. Bolton, SLAC April 24, 2002
High energy 6.2 fs pulses Shambhu Ghimire, Bing Shan, and Zenghu Chang
Presentation transcript:

Palaiseau - FRANCE Spatio-Temporal Chirped Pulse Amplification for Avoiding Spectral Modifications in Ultra-Short Petawatt Lasers C. Radier1,2, F. Giambruno1,3, C. Simon-Boisson2, V. Moro2, G. Chériaux1 1 LOA, Chemin de la Hunière, 91761 Palaiseau Cedex, France 2 TOSA-DSL, 2 Avenue Gay Lussac, 78995 Elancourt, France 3 ILE, CNRS, Ecole Polytechnique, ENSTA, Institut d’optique, 91761 Palaiseau Cedex, France christophe.radier@fr.thalesgroup.com

Context (1/2) Generation of multi-tens of joules energy and several tens of femtoseconds duration pulses leading to petawatt peak power levels Extremely high peak power pulses (10 PW) : => Vulcan laser 300 J / 30 fs (OPCPA) in LBO and KDP => Apollon-10P 150 J / 15 fs (CPA) in Ti:Sa Management of the spectral energy distribution in terms of shape and bandwidth during their amplification process : => Temporal profile adapted to the high intensity interaction http://loa.ensta.fr/ UMR 7639

Context (2/2) OPCPA configuration in LBO / BBO / KDP : Control of the spectrum (width and shape) by the angles in the non-linear crystal and by the pump (temporal profile and intensity) CPA configuration in Ti:Sa : Amplification of temporally chirped pulses => Gain narrowing (inhomogeneous spectral gain ) Input : Δλ½ = 85 nm Pass 6 : Δλ½ = 62 nm http://loa.ensta.fr/ UMR 7639 Frantz et Nodvik model : « Gain regime : J0(t) ~ Jsat / 1000 & G = 100 » 

Context (2/2) OPCPA configuration in LBO / BBO / KDP : Control of the spectrum (width and shape) by the angles in the non-linear crystal and by the pump (temporal profile and intensity) CPA configuration in Ti:Sa : Amplification of temporally chirped pulses = Gain shifting (amplification saturation ) Input : λc = 794 nm Pass 6 : λc = 808 nm Duration (ps) http://loa.ensta.fr/ UMR 7639 Frantz et Nodvik model : « Saturation regime : J0(t) ~ Jsat / G = 1,8 » 

Existing solutions Different relevant active and passive solutions to overcome the gain narrowing issue (mJ-level pulses in the 10 fs regime) Acousto-optic programmable dispersive filter1 Multilayer Gain Narrowing compensators2,3,4 Negatively and Positively Chirped Pulsed Amplification5 No solution to suppress the spectral shape modifications due to saturation effects at moderate or high level energy (> 1J). F. Verluise et al., “Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping”, Opt. Lett. 25, 575–577 (2000). 2. A. Amani Eilanlou et al., “Direct amplification of terawatt sub-10-fs pulses in a CPA system of Ti:sapphire laser,” Opt. Express 16, 13431–13438 (2008). 3. H. Takada, et al., “High-repetition-rate 12fs pulse amplification by a Ti:sapphire regenerative amplifier system,” Opt. Lett. 31, 1145–1147 (2006). 4. L. Antonucci, et al., “14 fs high temporal quality injector for ultra-high intensity laser,” Opt. Commun. 282, 1374–1379 (2009). 5.  M. P. Kalashnikov et al., “Suppression of gain narrowing in multi-TW lasers with negatively and positively chirped pulse amplification,” Appl. Phys. B 81, 1059 (2005). http://loa.ensta.fr/ UMR 7639

Spatio-Temporal Chirped Pulse Amplification (STCPA) (1/2) Principle : Combination of temporal and spatial dispersion enable amplified spectra to be unaffected by saturation effect. i.e. spatially spreading spectral components to separately amplify them and thus deleting the gain competition http://loa.ensta.fr/ UMR 7639

Spatio-Temporal Chirped Pulse Amplification (STCPA) (1/2) Principle : Combination of temporal and spatial dispersion enable amplified spectra to be unaffected by saturation effect. Oscillator Stretcher Power amplifier Compressor Classical CPA scheme Ti:Sa Crystal Pump Beam IR Beam http://loa.ensta.fr/ UMR 7639

Spatio-Temporal Chirped Pulse Amplification (STCPA) (1/2) Principle : Combination of temporal and spatial dispersion enable amplified spectra to be unaffected by saturation effect. Ti:Sa Crystal Pump Beam IR Beam STCPA scheme Spatial spreading Spatial compression Oscillator Stretcher Power amplifier Compressor Gain zone shape adaptation http://loa.ensta.fr/ UMR 7639

Spatio-Temporal Chirped Pulse Amplification (STCPA) (2/2) Advantages : No spectral shifting while preserving energy extraction in saturation regime i.e. saturation effect is equally distributed on all the spectral range instead of only the infrared edge. Conditions : Input pulse has to be collimated Spatial spreading law has to be inverse of that of spatial compression Pump beam has to be matched to the oblong seeded beam Inconvenient : Gain narrowing not avoided in this configuration http://loa.ensta.fr/ UMR 7639

Experiment Set Up Frequency doubled Nd:YVO4 3,7 W Ti:Sa Oscillator 3,8 nJ / 80 MHz http://loa.ensta.fr/ UMR 7639

Öffner triplet Stretcher Experiment Set Up Frequency doubled Nd:YVO4 3,7 W Öffner triplet Stretcher Ti:Sa Oscillator 250 ps 3,8 nJ / 80 MHz http://loa.ensta.fr/ UMR 7639

Regenerative Amplifier Öffner triplet Stretcher Experiment Set Up Frequency doubled Nd:YVO4 1,5 mJ 1 kHz 3,7 W Regenerative Amplifier Öffner triplet Stretcher Ti:Sa Oscillator 7,1 mJ / 1 kHz 250 ps 3,8 nJ / 80 MHz Q-switched Nd:YLF http://loa.ensta.fr/ UMR 7639

Regenerative Amplifier Öffner triplet Stretcher Experiment Set Up Frequency doubled Nd:YVO4 500 µJ 1 kHz + Birefringent Plate 3,7 W Regenerative Amplifier Öffner triplet Stretcher Ti:Sa Oscillator 7,1 mJ / 1 kHz 250 ps 3,8 nJ / 80 MHz Q-switched Nd:YLF http://loa.ensta.fr/ UMR 7639

Regenerative Amplifier Öffner triplet Stretcher Experiment Set Up Cylindric lenses 180 mJ / 10 Hz Nd:YAG LaK8 Prisms Multipass amplifier 6 passes Ti:Sa Absorption : 90% Output Ø = 15 mm 40 µJ 10 Hz Frequency doubled Nd:YVO4 Pockels Cell 500 µJ 1 kHz + Birefringent Plate 3,7 W Regenerative Amplifier Öffner triplet Stretcher Ti:Sa Oscillator 7,1 mJ / 1 kHz 250 ps 3,8 nJ / 80 MHz Q-switched Nd:YLF http://loa.ensta.fr/ UMR 7639

Experiment Set Up Cylindric lenses 180 mJ / 10 Hz Nd:YAG LaK8 Prisms Multipass amplifier 6 passes Ti:Sa Absorption : 90% Output Ø = 15 mm 40 µJ 10 Hz IR Beam Before Prisms IR Beam After Prisms Øy,FWHM = 1900 µm Øx,FWHM = 3000 µm Øx,y,FWHM = 1900 µm http://loa.ensta.fr/ UMR 7639 Aspect Ratio of 1,6

Experiment Set Up Cylindric lenses 180 mJ / 10 Hz Nd:YAG LaK8 Prisms Multipass amplifier 6 passes Ti:Sa Absorption : 90% Output Ø = 15 mm 40 µJ 10 Hz IR Beam After Prisms Wavelength spreading 19 nm/mm Øy,FWHM = 1900 µm Øx,FWHM = 3000 µm http://loa.ensta.fr/ UMR 7639

Experiment Set Up Cylindric lenses 180 mJ / 10 Hz Nd:YAG LaK8 Prisms Multipass amplifier 6 passes Ti:Sa Absorption : 90% Output Ø = 15 mm 40 µJ 10 Hz Left Side Øy,FWHM = 600 µm Øx,FWHM = 4000 µm Output Beam Pump Øx,y,FWHM = 10 mm Right Side Øy,FWHM = 600 µm Øx,FWHM = 4000 µm http://loa.ensta.fr/ UMR 7639

Experiment Set Up Output 28 mJ ~ 1,8 J/cm² Cylindric lenses 180 mJ / 10 Hz Nd:YAG LaK8 Prisms Multipass amplifier 6 passes Output 28 mJ ~ 1,8 J/cm² Ti:Sa Absorption : 90% Ø = 15 mm 40 µJ 10 Hz FFT Calculation Simulation CPA Experiment STCPA http://loa.ensta.fr/ UMR 7639

No angular and transverse chirp Experiment Set Up Cylindric lenses 180 mJ / 10 Hz Nd:YAG LaK8 Prisms Multipass amplifier 6 passes Output 28 mJ ~ 1,8 J/cm² Ti:Sa Absorption : 90% Ø = 15 mm 40 µJ 10 Hz Far field Near field http://loa.ensta.fr/ UMR 7639 No angular and transverse chirp

Conclusion First amplification scheme in Ti:Sa using a combination of spatial and temporal chirp STCPA concept avoids effects of saturation / enables a control of the amplified spectrum at high energy Using appropriate chirp tool : output beam free of angular and transverse chirp Fully relevant technique for obtaining very intense and short laser pulses (energy in excess of 10’s of Joules) with good temporal quality http://loa.ensta.fr/ UMR 7639

Thank you ! http://loa.ensta.fr/ UMR 7639