Plasma Antenna. البلازما البلازما هي مادة موجودة بالكون كله تقريبا, وهي تعتبر شبه محايدة كهربائياً بمعنى أن الشحنة الكهربية تكاد تقترب من الصفر وهي خليط.

Slides:



Advertisements
Similar presentations
ProjectIEEE Broadband Wireless Access Working Group TitleA Proposal for beam steering antennas consideration in n AWD.
Advertisements

A Proposal for beam steering antennas consideration in n AWD.
FP7-ICT sarabandfp7.eu SMART ANTENNA & RADIO FOR ACCESS AND BACKHAUL FOR ADVANCED NETWORK NODES sarabandfp7.eu FP7-ICT PRESENTATION.
Radio over fiber.
Satellite Communication
MultiBeam Smart Antenna Technology for Reduced Network Costs Broadband Wireless Forum February 18, 2001 Dan Castellano VP Operations and Manufacturing.
What is a network? A network consists of two or more computers that are linked in order to share resources (such as printers and CD-ROMs) , exchange.
A NEW PRINTED QUASI-LANDSTORFER ANTENNA
Unbounded media have network signals that are not bound by any type of fiber or cable; hence, they are also called wireless technologies Wireless LAN.
Antennas Lecture 9.
Copyright : Hi Tech Criminal Justice, Raymond E. Foster Police Technology Police Technology Chapter Three Police Technology Wireless Communications.
Antenna Primer Wang Ng. References Balanis; Antenna Theory Collin; Antennas and Radiowave Propagation.
Optical CDMA  Electrical  EE566: Optical Communication Optical CDMA Presented by: George Partasides
1 SMART ANTENNA TECHNIQUES AND THEIR APPLICATION TO WIRELESS AD HOC NETWORKS JACK H. WINTERS /11/13 碩一 謝旻欣.
SMART ANTENNA SYSTEMS. Increasing use in Mobile Wireless Communications due to demand for  Higher Capacity  Higher Coverage  Higher bit rate  Improved.
Progress report Smart antennas in wireless communications by Ivan Arkhipov cs603 Wireless Communications & Networks Instructor: Dr. Ajay Gupta.
Dennis N. McGregor Program Manager Communications & Networking ONR Navy Perspectives on Wireless Communications and.
EE 525 Antenna Engineering
Listing 823. GPON/EPON the next generation of broadband optoelectronics system on a chip.
APPLICATIONS OF MICROWAVE ENGINEERING Antenna gain is proportional to the electrical size of the antenna. At higher frequencies, more antenna gain is therefore.
Wireless MESH network Tami Alghamdi. Mesh Architecture – Mesh access points (MAPs). – Mesh clients. – Mesh points (MPs) – MP uses its Wi-Fi interface.
Sistem Jaringan dan Komunikasi Data #3. Overview  guided - wire / optical fibre  unguided - wireless  characteristics and quality determined by medium.
Terrestrial Microwave TK2133 A Lee Hau Sem A Lai Horng Meau.
For 3-G Systems Tara Larzelere EE 497A Semester Project.
Chapter 7 Transmission Media. Transmission medium (layer zero) A transmission media defined as anything that carry information between a source to a destination.
Communication channels and transmission media
Sharif University of Technology Physical layer: Wireless Transmission.
Data Communication. 2 Data Communications Data communication system components: Message Message Information (data) to be communicated. Sender Sender Device.
SMART ANTENNA SYSTEMS IN BWA Submitted by M. Venkateswararao.
1 SMART ANTENNAS FOR WIRELESS COMMUNICATIONS JACK H. WINTERS AT&T Labs - Research Red Bank, NJ September 9, 1999.
Oct. 16, 2006 Midterm Next Class Assignment #4 is Marked
SMART ANTENNA under the guidance of Mr. G.V.Kiran Kumar EC
SMART ANTENNA.
WiMAX, meaning Worldwide Interoperability for Microwave Access Emerging technology that provides wireless transmission of data using a variety of transmission.
Gürkan RAKANOĞLU. Outline Overview of Wireless Mesh Networks Video Streaming over Wireless Networks Applications of Video over Wireless Networks.
Physical Transmission
Introduction to Network (c) Nouf Aljaffan
Chapter 7. Transmission Media
1. Outlines Introduction What is Wi-Fi ? Wi-Fi Standards Hotspots Wi-Fi Network Elements How a Wi-Fi Network Works Advantages and Limitations of Wi-Fi.
Designing for High Density Wireless LANs Last Update Copyright Kenneth M. Chipps Ph.D.
S MART A NTENNA B.GANGADHAR 08QF1A1209. ABSTRACT One of the most rapidly developing areas of communications is “Smart Antenna” systems. This paper deals.
1. Physical Transmission Transmission Media Wire (guided) Coaxial cable Twisted Pair UTP STP Fiber Optic Wireless (unguided) Radio waves Microwave Infrared.
INTRODUCTION. Homogeneous Networks A homogeneous cellular system is a network of base stations in a planned layout and a collection of user terminals,
Vidya Bharathi Institute of Technology
Part 3  Transmission Media & EM Propagations.  Provides the connection between the transmitter and receiver. 1.Pair of wires – carry electric signal.
Chapter 3 Antenna Types Part 1.
Horn Antennas. Basic Concept The horn antenna gains its name from its appearance Type of Aperture antenna A horn antenna is used for the transmission.
Topic : 4.0 WIRELESS TECHNOLOGIES.  Wireless networks utilize radio waves and/or microwaves to maintain communication channels between computers. Wireless.
Stallings, Wireless Communications & Networks, Second Edition, © 2005 Pearson Education, Inc. All rights reserved Antennas and Propagation.
Transmission Media The transmission medium is the physical path by which a message travels from sender to receiver. Computers and telecommunication devices.
Antenna Arrays and Automotive Applications
SMART ANTENNAS SMART ANTENNAS apoorva k. Shetti 2bu09ec006
[1] TECHNICAL SEMINAR PRESENTATION SMART ANTENNA Edited by: Priyabrata Nayak, Lecturer, Dept. of CSE SMART ANTENNA.
 Abbreviation of fourth generation wireless technology  It will provide a comprehensive IP solution where voice, data and multimedia can be given to.
Digital Ham Radio An Introduction to DMR and Fusion
EE 525 Antenna Engineering
Seminar on 4G wireless technology
United College Of Engineering And Research,
Physical Transmission
-Fadadu Jaydip(08BEC024) -Gor Kuldip (08BEC030)
Physical Transmission
COLLEGE OF ENGINEERING, PERUMON
SMART ANTENNA.
Antennas.
Physical Transmission
Terrestrial Microwave
EE 525 Antenna Engineering
SMART ANTENNA.
Terrestrial Microwave
Presentation transcript:

Plasma Antenna

البلازما البلازما هي مادة موجودة بالكون كله تقريبا, وهي تعتبر شبه محايدة كهربائياً بمعنى أن الشحنة الكهربية تكاد تقترب من الصفر وهي خليط من الأيونات والإلكترونات وجسيمات محايدة (وهي ذرات غير متأينة) والبلازما ليست متأينة بالكامل ولكن لها قدرات تقنية قوية تمتد من إنارة الفلورسنت وحتى المعالجة في صناعة أشباه الموصلات, وتتفاعل البلازما بشكل كبير مع الموجات الكهرومغناطيسية.

يعتمد التفاعل ما بين البلازما والإشعاع الكهرومغناطيسي على الخصائص الفيزيائية للبلازما (الحرارة والكثافة) : فدرجة حرارة البلازما قد تبدأ من الصفر المطلق حتى تتعدى 10 9 كلفن. وكثافة البلازما تبدأ من أقل من جزيء بالمتر المكعب وتصل إلى كثافة أكثر من الرصاص.

المجال واسع لخصائص البلازما من المعامل المتغير والترددات فهو موصل للكهرباء, وتأثره بالموجات الكهرومغناطيسية ذات التردد البسيط مشابه للمعادن, يعني ببساطة أنه يعكس إشعاع الموجات البسيطة الطارئة. والمهم باستخدام البلازما هو التحكم بالموجات الكهرومغناطيسية المرتدة من الجسم (التخفي البلازمي) وهو عملي جدا بالترددات العالية حيث قابلية البلازما بالتوصيل تسمح بالتفاعل بقوة مع موجات الراديو القادمة ولكن تلك الموجات ستمتص وتتحول إلى طاقة حرارية بدلا من انعكاسها.للكهرباءالراديوطاقة حرارية بما أن البلازما يتماشى مع مجال واسع من الموجات, ففي حالة البلازما غير الممغنطة أكثر مايتصل بها هي البلازما المتذبذبة موجات لانجمير التي تتطابق مع الضغط الديناميكي للإلكترون. أما البلازما الممغنطة فهناك صيغ متعددة من الموجات ممكن اثارتها ممايمكنها من التفاعل مع اشعاع ترددات الرادار.للإلكترون

Plasma antenna A plasma antenna is a type of radio antenna currently in development in which plasma is used instead of the metal elements of a traditional antenna. A plasma antenna can be used for both transmission and reception. Although plasma antennas have only become practical in recent years, the idea is not new; a patent for an antenna using the concept was granted to J Hettinger in 1919.

Early practical examples of the technology used discharge tubes to contain the plasma and are referred to as ionized gas plasma antennas. Ionized gas plasma antennas can be turned on and off and are good for stealth and resistance to electronic warfare and cyber attacks. Ionized gas plasma antennas can be nested such that the higher frequency plasma antennas are placed inside lower frequency plasma antennas. Higher frequency ionized gas plasma antenna arrays can transmit and receive through lower frequency ionized gas plasma antenna arrays. This means that the ionized gas plasma antennas can be co-located and ionized gas plasma antenna arrays can be stacked. Ionized gas plasma antennas can eliminate or reduce co-site interference. Smart ionized gas plasma antennas use plasma physics to shape and steer the antenna beams without the need of phased arrays. Satellite signals can be steered and/or focused in the reflective or refractive modes using banks of plasma tubes making unique ionized gas satellite plasma antennas. The thermal noise of ionized gas plasma antennas is less than in the corresponding metal antennas at the higher frequencies. Solid state plasma antennas (also known as plasma silicon antennas) with steerable directional functionality that can be manufactured using standard silicon chip fabrication techniques are now also in development. Plasma silicon antennas are candidates for use in WiGig (the planned enhancement to Wi-Fi, and have other potential applications, for example in reducing the cost of vehicle- mounted radar collision avoidance systems.radar

Operation :  In an ionized gas plasma antenna, a gas is ionized to create a plasma. Unlike gases, plasmas have very high electrical conductivity so it is possible for radio frequency signals to travel through them so that they act as a driven element (such as a dipole antenna) to radiate radio waves, or to receive them.  Alternatively the plasma can be used as a reflector or a lens to guide and focus radio waves from another source.

Advantages Plasma antennas possess a number of advantages over metal antennas, including: As soon as the plasma generator is switched off, the plasma returns to a non conductive gas and therefore becomes effectively invisible to radar. They can be dynamically tuned and reconfigured for frequency, direction, bandwidth, gain and beam width, so replacing the need for multiple antennas. They are resistant to electronic warfare. At satellite frequencies, they exhibit much less thermal noise and are capable of faster data rates.

Oil and gas companies worldwide increasingly rely on broadband wireless systems to provide affordable high data rate communications to locations that are prohibitive costly or impractical to reach with optical fibre or leased lines. These networks connect remote locations, large facilities, people and applications, carrying large amounts of business- critical information and M2M data from telemetry and SCADA systems. In order to be competitive in this challenging market, wireless equipment OEMs need to deliver systems that can be deployed quickly and easily in remote locations - ideally by non-technical personnel. In addition, these systems need to be robust and reliable, incorporating self-managing and self-healing capabilities. Plasma Antennas' smart selectable multi-beam antennas can be automatically aligned when a remote or nomadic network node is installed. Automatic alignment eliminates the need for manual aiming, significantly simplifying deployment and reducing CAPEX. In addition, selectable multi-beam antennas can be re-aligned dynamically, enabling wireless networks to self-organise whenever as traffic or interference patterns change, or in order to provide fail-over mechanisms. When deployed at base stations and relay nodes, the high-speed beam-to-beam switching provided by Plasma Antennas’ selectable multi-beam antennas enable efficient spatial-TDMA, resulting in substantial increases in overall network capacity and lower cost-per-bit.