Multigravity and Spacetime Foam Remo Garattini Università di Bergamo I.N.F.N. - Sezione di Milano IRGAC 2006  Barcelona, 15-7-2006.

Slides:



Advertisements
Similar presentations
Why did the Universe Inflate?. Proceedings of the Nuffield Workshop, Cambridge, 1982.
Advertisements

Theories of gravity in 5D brane-world scenarios
Brane-World Inflation
Quantum Gravity and the Cosmological Constant Enikő Regős Enikő Regős.
Dark Energy and Quantum Gravity Dark Energy and Quantum Gravity Enikő Regős Enikő Regős.
BRANE SOLUTIONS AND RG FLOW UNIVERSIDADE FEDERAL DE CAMPINA GRANDE September 2006 FRANCISCO A. BRITO.
A view on the problems of Quantum Gravity T. P. Shestakova Department of Theoretical and Computational Physics Southern Federal University (former Rostov.
A Multi Gravity Approach to Space-Time Foam Remo Garattini Università di Bergamo I.N.F.N. - Sezione di Milano Low Energy Quantum Gravity York,
Improved constrained scheme for the Einstein equations: an approach to the uniqueness issue in collaboration with Pablo Cerdá-Durán Harald Dimmelmeier.
G. Esposito G. Esposito. 1 - Historical background 2 - GR singularities in the sixties 3 - Feynman quantization of GR 4 - Quantum cosmology 5 - Singularity.
Cosmological Expansion from Nonlocal Gravity Correction Tomi Koivisto, ITP Heidelberg 1. Outline Introduction 2. Nonlocalities in physics 3. The gravity.
L. Perivolaropoulos Department of Physics University of Ioannina Open page.
Tomographic approach to Quantum Cosmology Cosimo Stornaiolo INFN – Sezione di Napoli Fourth Meeting on Constrained Dynamics and Quantum Gravity Cala Gonone.
Coupled Dark Energy and Dark Matter from dilatation symmetry.
Self Sustained Wormholes Remo Garattini Università di Bergamo I.N.F.N. - Sezione di Milano MG 11 Berlin,
The 2d gravity coupled to a dilaton field with the action This action ( CGHS ) arises in a low-energy asymptotic of string theory models and in certain.
Black Hole Evaporation in a Spherically Symmetric Non- Commutative Space-Time G. Esposito, INFN, Naples (QFEXT07, Leipzig, September 2007) with E. Di Grezia,
Casimir Energy, the Cosmological Constant and massive gravitons Remo Garattini Università di Bergamo I.N.F.N. - Sezione di Milano Cala Gonone,
Infra-red Quantum Effects in de Sitter Space Yoshihisa Kitazawa KEK Theory Center and Sokendai H. Kitamoto and Y.K. arXiv:1012:5930.
HOLOGRAPHY, DIFFEOMORHISMS, AND THE CMB Finn Larsen University of Michigan Quantum Black Holes at OSU Ohio Center for Theoretical Science September
Construction of gauge-invariant variables for linear-order metric perturbations on general background spacetime Kouji Nakamura (NAOJ) References : K.N.
Effective field theory approach to modified gravity with applications to inflation and dark energy Shinji Tsujikawa Hot Topics in General Relativity And.
2次ゲージ不変摂動論定式化の進行状況 Kouji Nakamura (Grad. Univ. Adv. Stud. (NAOJ)) References : K.N. Prog. Theor. Phys., vol.110 (2003), 723. (gr-qc/ ). K.N. Prog.
Self – accelerating universe from nonlinear massive gravity Chunshan Lin Kavli
XII International School-seminar “The Actual Problems of Microworld Physics” July 22 – August 2, 2013, Gomel, Belarus Vacuum polarization effects in the.
Conservation of the non-linear curvature perturbation in generic single-field inflation Yukawa Institute for Theoretical Physics Atsushi Naruko In Collaboration.
Quantum Field Theory in de Sitter space Hiroyuki Kitamoto (Sokendai) with Yoshihisa Kitazawa (KEK,Sokendai) based on arXiv: [hep-th]
Dark Energy The first Surprise in the era of precision cosmology?
Frédéric Henry-Couannier CPPM/RENOIR Marseille The Dark Side of Gravity and our Universe.
Looking for Trans-Planckia in the CMB Hael Collins (U. Mass, Amherst) and R.H. (CMU) Miami2006 Physics Conference arXiV: hep-th/ , , ,
Giuseppe De Risi M. Cavaglià, G.D., M. Gasperini, Phys. Lett. B 610:9-17, hep-th/ QG05, Sept
Derivation of the Friedmann Equations The universe is homogenous and isotropic  ds 2 = -dt 2 + a 2 (t) [ dr 2 /(1-kr 2 ) + r 2 (dθ 2 + sinθ d ɸ 2 )] where.
Tunneling cosmological state and origin of SM Higgs inflation A.O.Barvinsky Theory Department, Lebedev Physics Institute, Moscow based on works with A.Yu.Kamenshchik.
Cosmological Perturbations in the brane worlds Kazuya Koyama Tokyo University JSPS PD fellow.
Quantum Gravity and emergent metric Quantum Gravity and emergent metric.
Quantum Gravity at a Lifshitz Point Ref. P. Horava, arXiv: [hep-th] ( c.f. arXiv: [hep-th] ) June 8 th Journal Club Presented.
Renormalized stress tensor for trans-Planckian cosmology Francisco Diego Mazzitelli Universidad de Buenos Aires Argentina.
SOME LIKE IT HOT: dynamical suppression of vacuum configurations in cosmology, and hot CMB A.O.Barvinsky Theory Department, Lebedev Physics Institute,
Quantum cosmology with nontrivial topologies T. Vargas Center for Mathematics and Theoretical Physics National Central University.
Leading order gravitational backreactions in de Sitter spacetime Bojan Losic Theoretical Physics Institute University of Alberta IRGAC 2006, Barcelona.
From Black Hole Entropy to the Cosmological Constant Modified Dispersion Relations: from Black Hole Entropy to the Cosmological Constant Remo Garattini.
Construction of gauge-invariant variables for linear-order metric perturbation on general background spacetime Kouji Nakamura (NAOJ) References : K.N.
Effects of Modified Dispersion Relations on the Computation of Zero Point Energy Remo Garattini Università di Bergamo I.N.F.N. - Sezione di Milano MSQS.
Quantum Cosmology From Three Different Perspectives Giampiero EspositoGiampiero Esposito, INFN, Naples; MG11 Conference, Berlin, July 2006, COT5.
GRAVITON BACKREACTION & COSMOLOGICAL CONSTANT
Effects of Modified Dispersion Relations on the Cosmological Constant Computation Remo Garattini Università di Bergamo I.N.F.N. - Sezione di Milano Cortona.
Non-Commutative Einstein Equations and Seiberg–Witten Map Paolo Aschieri,Elisabetta Di Grezia, Giampiero Esposito, INFN, Turin and Naples. Friedmann Seminar,
Self Sustained Traversable Wormholes: from Phantom energy to noncommutative geometry Remo Garattini Università di Bergamo I.N.F.N. - Sezione di Milano.
Do consistent modified gravity models mimic General Relativity? S. Appleby, R. Battye. Talk based on arXiv:
1 Bhupendra Nath Tiwari IIT Kanpur in collaboration with T. Sarkar & G. Sengupta. Thermodynamic Geometry and BTZ black holes This talk is mainly based.
IRGAC Cosmological perturbations in stochastic gravity Yuko Urakawa with Kei-ichi Maeda.
From 3-Geometry Transition Amplitudes to Graviton States Federico Mattei joint work with: Carlo Rovelli, Simone Speziale, Massimo Testa LOOPS ’
1 Loop corrections to the primordial perturbations Yuko Urakawa (Waseda university) Kei-ichi Maeda (Waseda university)
Gravity effects to the Vacuum Bubbles Based on PRD74, (2006), PRD75, (2007), PRD77, (2008), arXiv: [hep-th] & works in preparation.
Heavy quark energy loss in finite length SYM plasma Cyrille Marquet Columbia University based on F. Dominguez, C. Marquet, A. Mueller, B. Wu and B.-W.
1 Electromagnetic Casimir Effect in Krein Space M. Naseri Islamic Azad University, Kermanshah Branch, Kermanshah, IRAN
Scale vs Conformal invariance from holographic approach
Ariel Edery Bishop’s University
A Beautiful MOND ? G B Tupper U C T Beyond 2010.
Remo Garattini Università di Bergamo I.N.F.N. - Sezione di Milano
Recent status of dark energy and beyond
Why concave rather than convex
Notes on non-minimally derivative coupling
The case for emergent gravity
Global Defects near Black Holes
ブレイン宇宙における重力波の伝播 石原 秀樹 大阪市立大学 共同研究者 田中 泉 2019/4/28.
宇宙磁场的起源 郭宗宽 中山大学宇宙学研讨班
Bianchi type-III quantum cosmology T Vargas National Central University I.-Introduction In the standard cosmological model, the universe is described by.
Quantum gravity predictions for particle physics and cosmology
Presentation transcript:

Multigravity and Spacetime Foam Remo Garattini Università di Bergamo I.N.F.N. - Sezione di Milano IRGAC 2006  Barcelona,

2 The Cosmological Constant Problem  At the Planck era For a pioneering review on this problem see S. Weinberg, Rev. Mod. Phys. 61, 1 (1989). For more recent and detailed reviews see V. Sahni and A. Starobinsky, Int. J. Mod. Phys. D 9, 373 (2000), astro-ph/ ; N. Straumann, The history of the cosmological constant problem gr-qc/ ; T.Padmanabhan, Phys.Rept. 380, 235 (2003), hep-th/ Recent measuresRecent measures A factor of

3 Wheeler-De Witt Equation B. S. DeWitt, Phys. Rev.160, 1113 (1967).  can be seen as an eigenvalue  can be seen as an eigenvalue  G ijkl is the super-metric, 8G and  is the cosmological constant  R is the scalar curvature in 3-dim.

4 Re-writing the WDW equation Where

5 Eigenvalue problem Quadratic Approximation Let us consider the 3-dim. metric g ij and perturb around a fixed background, (e.g. Schwarzschild) g ij = g S ij + h ij

6

7 Canonical Decomposition  h is the trace  (L ij is the longitudinal operator  h  ij represents the transverse-traceless component of the perturbation  graviton M. Berger and D. Ebin, J. Diff. Geom.3, 379 (1969). J. W. York Jr., J. Math. Phys., 14, 4 (1973); Ann. Inst. Henri Poincaré A 21, 319 (1974).

8 Integration rules on Gaussian wave functionals 12345

9 Graviton Contribution W.K.B. method and graviton contribution to the cosmological constant

10 Regularization Zeta function regularization  Equivalent to the Zero Point Energy subtraction procedure of the Casimir effect

11 Isolating the divergence

12 Renormalization  Bare cosmological constant changed into The finite part becomes

13 Renormalization Group Equation  Eliminate the dependance on  and impose   must be treated as running

14 Energy Minimization (  Maximization)  At the scale     has a maximum for with Not satisfying

15 Motivating Multigravity 1) In a foamy spacetime, general relativity can be renormalized when a density of virtual black holes is taken under consideration coupled to N fermion fields in a 1/N expansion [L. Crane and L. Smolin, Nucl. Phys. B (1986) 714.]. [L. Crane and L. Smolin, Nucl. Phys. B (1986) 714.]. 2) When gravity is coupled to N conformally invariant scalar fields the evidence that the ground-state expectation value of the metric is flat space is false [J.B. Hartle and G.T. Horowitz, Phys. Rev. D 24, (1981) 257.]. [J.B. Hartle and G.T. Horowitz, Phys. Rev. D 24, (1981) 257.]. Merging of point 1) and 2) with N gravitational fields (instead of scalars and fermions) leads to multigravity Hope for a better Cosmological constant computation

16 First Steps in Multigravity Pioneering works in 1970s known under the name strong gravity strong gravity or f-g theory (bigravity) [C.J. Isham, A. Salam, and J. Strathdee, Phys Rev. D 3, 867 (1971), A. D. Linde, Phys. Lett. B 200, 272 (1988).]

17 Structure of Multigravity T.Damour and I. L. Kogan, Phys. Rev.D 66, (2002). A.D. Linde, hep-th/ N massless gravitons gravitons

18 Multigravity gas For each action, introduce the lapse and shift functions Choose the gauge Define the following domain No interaction Depending on the structure You are looking, You could have a ‘ideal’gas of geometries. Our specific case: Schwarzschild wormholes

19  Wave functionals do not overlap Additional assumption The single eigenvalue problem turns into problem turns into

20 And the total wave functional becomes The initial problem changes into 

21 Further trivial assumption R. Garattini - Int. J. Mod. Phys. D 4 (2002) 635; gr-qc/ N w copies of the same gravity Take the maximum

22 There are arguments leading to Nevertheless, there is no Proof of this

23 Conclusions  Wheeler-De Witt Equation  Sturm-Liouville Problem.  The cosmological constant is the eigenvalue.  Variational Approach to the eigenvalue equation (infinites).  Eigenvalue Regularization with the Riemann zeta function  Casimir energy graviton contribution to the cosmological constant.  Renormalization and renormalization group equation.  Generalization to multigravity.  Specific example: gas of Schwarzschild wormholes.

24 Problems  Analysis to be completed.  Beyond the W.K.B. approximation of the Lichnerowicz spectrum.  Discrete Lichnerowicz spectrum.  Specific examples of interaction like the Linde bi- gravity model or Damour et al.  Possible generalization con N ‘different gravities’?!?!  Use a distribution of gravities!!