First 10! Step 1: Draw a triangle and label the vertices ABC. Step 2:

Slides:



Advertisements
Similar presentations
Angle Relationships in Triangles
Advertisements

4-4 Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
Angle Relationships in Triangles
Warm Up 1. Find the measure of exterior DBA of BCD, if mDBC = 30°, mC= 70°, and mD = 80°. 2. What is the complement of an angle with measure 17°?
4-3 Angle Relationship in triangles
Ch 3.4 Standard 12.0: Students find and use measures of interior and exterior angles of triangles to classify figures and solve problems. Standard 13.0.
PARALLEL LINES CUT BY A TRANSVERSAL
4-1 Triangles and Angles Warm Up Lesson Presentation Lesson Quiz
4.2 Angle Relationships in Triangles. dia/practice_quizzes/geo/geo_pq_trc_01.html
Use the diagram to find mMJK.
Angle Relationships in Triangles
12. Right Obtuse34. no; isos does not have the 3 = sides needed 14. Equiangular yes; equilateral has the 2 = sides needed 15. Equilateral39. see.
15. 84°30. 48° ¾ °31. 48° 17. (90 – 2x)°32. 42° ° °; 360° ° ° °35. 18° °; 48°39. Measures of ext  s will.
GEOMETRY 2-1 Triangles Warm Up Classify each angle as acute, obtuse, or right If the perimeter is 47, find x and the lengths of the three.
Holt McDougal Geometry 4-3 Angle Relationships in Triangles Warm Up 1. Find the measure of exterior DBA of BCD, if mDBC = 30°, mC= 70°, and mD = 80°.
Angle Relationships in Triangles
Holt McDougal Geometry 4-4 Congruent Triangles 4-4 Congruent Triangles Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz.
Holt McDougal Geometry 4-4 Congruent Triangles Warm Up 1. Name all sides and angles of ∆FGH. 2. What is true about K and L? Why? 3. What does it mean.
Holt McDougal Geometry 4-4 Congruent Triangles 4-4 Congruent Triangles Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz.
73° 1; Parallel Post. Warm Up 1. What is the complement of an angle with measure 17°? 2. How many lines can be drawn through N parallel to MP? Why?
4-4 Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
Holt McDougal Geometry 4-3 Angle Relationships in Triangles 4-3 Angle Relationships in Triangles Holt Geometry Warm Up Warm Up Lesson Presentation Lesson.
Holt McDougal Geometry 4-3 Angle Relationships in Triangles 4-3 Angle Relationships in Triangles Holt Geometry Warm Up Warm Up Lesson Presentation Lesson.
Angle Relationships in Triangles
UNIT 4: TRIANGLE CONGRUENCE 4.2 Angle Relationships in Triangles.
Holt McDougal Geometry Angle Relationships in Triangles.
S ECTION 4-2 A NGLE R ELATIONSHIPS IN TRIANGLES.
Angle Relationships in Triangles
Objectives Find the measures of interior and exterior angles of triangles. Apply theorems about the interior and exterior angles of triangles.
Angle Theorems for Triangles
Angles of Triangles 4.2.
Angle Relationships in Triangles
Objectives Find the measures of interior and exterior angles of triangles. Apply theorems about the interior and exterior angles of triangles.
Warm Up 1. Find the measure of exterior DBA of BCD, if mDBC = 30°, mC= 70°, and mD = 80°. 2. What is the complement of an angle with measure 17°?
Classifying Triangles
Angle Relationships in Triangles
Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
Angle Theorems for Triangles
2.?? Drill 11/ 27/12 1. Find the measure of exterior DBA of BCD, if mDBC = 30°, mC= 70°, and mD = 80°. 2. What is the complement of an angle with.
Angle Relationships in Triangles
Angle Relationships in Triangles
Warm Up 1. What is the complement of an angle with measure 17°?
4-4 Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
Pearson Unit 1 Topic 4: Congruent Triangles 4-1: Congruent Figures Pearson Texas Geometry ©2016 Holt Geometry Texas ©2007.
FG, GH, FH, F, G, H Warm Up 1. Name all sides and angles of ∆FGH.
4-4 Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
Objectives Use properties of congruent triangles.
4-4 Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
Angle Relationships in Triangles
Angle Relationships in Triangles
Pearson Unit 1 Topic 3: Parallel & Perpendicular Lines 3-5: Parallel Lines and Triangles Pearson Texas Geometry ©2016 Holt Geometry Texas ©2007.
Congruent Triangles Warm Up Lesson Presentation Class Practice 5-2
Geometric figures are congruent if they are the same size and shape
Objectives Find the measures of interior and exterior angles of triangles. Apply theorems about the interior and exterior angles of triangles.
Warm Up 1. What is the complement of an angle with measure 17°?
Angle Relationships in Triangles
4-3 Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
Angle Relationships in Triangles
Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
4-3 Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
Angle Relationships in Triangles
Congruence and Triangles
An auxiliary line used in the Triangle Sum Theorem
Angle Relationships in Triangles
CN#2 Angle Relationships in Triangles
Angle Relationships in Triangles
Angle Relationships in Triangles
Angle Relationships in Triangles
Objectives Find the measures of interior and exterior angles of triangles. Apply theorems about the interior and exterior angles of triangles.
Angle Relationships in Triangles
Presentation transcript:

First 10! Step 1: Draw a triangle and label the vertices ABC. Step 2: Measure each angle with a protractor. Step 3: Calculate the sum of the angle measures. Step 4: Did your neighbor find the same thing?

A corollary is a theorem whose proof follows directly from another theorem. Here are two corollaries to the Triangle Sum Theorem.

Example 1: Application After an accident, the positions of cars are measured by law enforcement to investigate the collision. Use the diagram drawn from the information collected to find mXYZ. mXYZ + mYZX + mZXY = 180° Sum. Thm Substitute 40 for mYZX and 62 for mZXY. mXYZ + 40 + 62 = 180 mXYZ + 102 = 180 Simplify. mXYZ = 78° Subtract 102 from both sides.

Example 1: Application After an accident, the positions of cars are measured by law enforcement to investigate the collision. Use the diagram drawn from the information collected to find mYWZ. 118° Step 1 Find mWXY. mYXZ + mWXY = 180° Lin. Pair Thm. and  Add. Post. 62 + mWXY = 180 Substitute 62 for mYXZ. mWXY = 118° Subtract 62 from both sides.

Example 1: Application Continued After an accident, the positions of cars are measured by law enforcement to investigate the collision. Use the diagram drawn from the information collected to find mYWZ. 118° Step 2 Find mYWZ. mYWX + mWXY + mXYW = 180° Sum. Thm Substitute 118 for mWXY and 12 for mXYW. mYWX + 118 + 12 = 180 mYWX + 130 = 180 Simplify. mYWX = 50° Subtract 130 from both sides.

Let the acute angles be A and B, with mA = 63.7°. Example 2 The measure of one of the acute angles in a right triangle is 63.7°. What is the measure of the other acute angle? Let the acute angles be A and B, with mA = 63.7°. mA + mB = 90° Acute s of rt. are comp. 63.7 + mB = 90 Substitute 63.7 for mA. mB = 26.3° Subtract 63.7 from both sides.

The interior is the set of all points inside the figure The interior is the set of all points inside the figure. The exterior is the set of all points outside the figure. It is formed by one side of the triangle and extension of an adjacent side. Exterior Interior

Each exterior angle has two remote interior angles Each exterior angle has two remote interior angles. A remote interior angle is an interior angle that is not adjacent to the exterior angle. 4 is an exterior angle. The remote interior angles of 4 are 1 and 2. Exterior Interior 3 is an interior angle.

Example 3: Applying the Exterior Angle Theorem Find mB. mA + mB = mBCD Ext.  Thm. Substitute 15 for mA, 2x + 3 for mB, and 5x – 60 for mBCD. 15 + 2x + 3 = 5x – 60 2x + 18 = 5x – 60 Simplify. Subtract 2x and add 60 to both sides. 78 = 3x 26 = x Divide by 3. mB = 2x + 3 = 2(26) + 3 = 55°

Example 3 Find mACD. mACD = mA + mB 6z – 9 = 2z + 1 + 90 Ext.  Thm. Substitute 6z – 9 for mACD, 2z + 1 for mA, and 90 for mB. 6z – 9 = 2z + 1 + 90 6z – 9 = 2z + 91 Simplify. Subtract 2z and add 9 to both sides. 4z = 100 z = 25 Divide by 4. mACD = 6z – 9 = 6(25) – 9 = 141°

Example 4 Find mP and mT. P  T mP = mT 2x2 = 4x2 – 32 Third s Thm. mP = mT Def. of  s. 2x2 = 4x2 – 32 Substitute 2x2 for mP and 4x2 – 32 for mT. –2x2 = –32 Subtract 4x2 from both sides. x2 = 16 Divide both sides by -2. So mP = 2x2 = 2(16) = 32°. Since mP = mT, mT = 32°.

Geometric figures are congruent if they are the same size and shape Geometric figures are congruent if they are the same size and shape. Corresponding angles and corresponding sides are in the same position in polygons with an equal number of sides. Two polygons are congruent polygons if and only if their corresponding sides are congruent. Thus triangles that are the same size and shape are congruent.

Example 1 If polygon LMNP  polygon EFGH, identify all pairs of corresponding congruent parts. Angles: L  E, M  F, N  G, P  H Sides: LM  EF, MN  FG, NP  GH, LP  EH

Example 2a Given: ∆ABC  ∆DEF a.) Find the value of x. b.) Find mF. AB  DE Corr. sides of  ∆s are . AB = DE Def. of  parts. Substitute values for AB and DE. 2x – 2 = 6 2x = 8 Add 2 to both sides. x = 4 Divide both sides by 2.