Kazuki Kasano Shimizu Group 2008 5.28 Wed M1 Colloquium Study of Magnetic Ordering in YbPd Reference R.Pott et al, Phys.Rev.Lett.54, 481-484 (1985) 1/13.

Slides:



Advertisements
Similar presentations
Observation of a possible Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state in CeCoIn 5 Roman Movshovich Andrea Bianchi Los Alamos National Laboratory, MST-10.
Advertisements

From weak to strong correlation: A new renormalization group approach to strongly correlated Fermi liquids Alex Hewson, Khan Edwards, Daniel Crow, Imperial.
Pressure-Induced Hydrogen-dominant metallic state in Aluminum Hydride HAGIHARA Toshiya Shimizu-group Igor Goncharenko et al., Phy. Rev. Lett. 100,
Defect physics of CuInSe 2 chalcopyrite semiconductor Yoshida-lab Hiroki Uede S. B. Zhang, Su-Huai Wei, Alex Zunger, H. Katayama-Yoshida, Phys. Rev. B.
1 High Pressure Study on MgB 2 B.Lorenz, et al. Phys. Rev.B 64,012507(2001) Shimizu-group Naohiro Oki.
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
P461 - Semiconductors1 Superconductivity Resistance goes to 0 below a critical temperature T c element T c resistivity (T=300) Ag mOhms/m Cu
Electronic structure of La2-xSrxCuO4 calculated by the
Search for high temperature superconductivity of Sr 2 VO 4 under high pressure Shimizu Lab Kaide Naohiro.
正弦波.
論理回路 第1回. 今日の内容 論理回路とは? 本講義の位置づけ,達成目標 講義スケジュールと内容 受講時の注意事項 成績の評価方法.
P460 - Quan. Stats. III1 Boson and Fermion “Gases” If free/quasifree gases mass > 0 non-relativistic P(E) = D(E) x n(E) --- do Bosons first let N(E) =
Semiconductors n D*n If T>0
The Three Hallmarks of Superconductivity
Coherent Kondo State in a Dense Kondo Substance : Ce x La 1-x Cu 6 A.Sumiyama et al., J.Phys.Soc.Jpn.55(1986) Shimizu-group Katsuya TOKUOKA.
Metals: Free Electron Model Physics 355. Free Electron Model Schematic model of metallic crystal, such as Na, Li, K, etc.
From Kondo and Spin Glasses to Heavy Fermions, Hidden Order and Quantum Phase Transitions A Series of Ten Lectures at XVI Training Course on Strongly Correlated.
Heavy Fermions Student: Leland Harriger Professor: Elbio Dagotto Class: Solid State II, UTK Date: April 23, 2009.
Shimizu-lab M-1 Kubota Kazuhisa
Magnetic transition in the Kondo lattice system CeRhSn2
Magnetic properties of a frustrated nickel cluster with a butterfly structure Introduction Crystal structure Magnetic susceptibility High field magnetization.
M1 Colloquium Presentation Arora Varun 29A13106 (Shimizu Lab) High Pressure Study of Na x TiNCl and CeFe 2.
Nano-scaled domain in the strongly correlated electron materials ( 強相関電子系におけるナノスケール電子相ドメイン ) Tanaka Laboratory Kenichi Kawatani First M1 colloquium.
6. Free Electron Fermi Gas Energy Levels in One Dimension Effect of Temperature on the Fermi-Dirac Distribution Free Electron Gas in Three Dimensions Heat.
Colossal Magnetoresistance of Me x Mn 1-x S (Me = Fe, Cr) Sulfides G. A. Petrakovskii et al., JETP Lett. 72, 70 (2000) Y. Morimoto et al., Nature 380,
Pressure effect on electrical conductivity of Mott insulator “Ba 2 IrO 4 ” Shimizu lab. ORII Daisuke 1.
Yoshida Laboratory Yuya Yamada (山田裕也) 1 Theoretical prediction of structures and properties of simple materials under high pressure ( 高圧下における単純物質の構造と物性の理論的予測.
Calorimetric Investigation under High Pressure Shimizu-Group M1 Shigeki TANAKA F. Bouquet et al., Solid State Communications 113 (2000)
Switching of Magnetic Ordering in CeRhIn 5 under Hydrostatic Pressure Kitaoka Laboratory Kazuhiro Nishimoto N. Aso et al., Phys. Rev. B 78, (2009).
Charge Kondo Effect and Superconductivity in Tl-Doped PbTe Y. Matsushita,et.al. PRL 94, (2005) T. A. Costi and V. Zlatic PRL 108, (2012)
Fe As Nodal superconducting gap structure in superconductor BaFe 2 (As 0.7 P 0.3 ) 2 M-colloquium5 th October, 2011 Dulguun Tsendsuren Kitaoka Lab. Division.
Evolution of Emerging Flux and Associated Active Phenomena Takehiro Miyagoshi (GUAS, Japan) Takaaki Yokoyama (NRO, Japan)
Search for superconductivity in CrB 2 under pressure 29A13025 Shimizu Lab Kaide Naohiro.
2013 Hangzhou Workshop on Quantum Matter, April 22, 2013
会社名など E. Bauer et al, Phys. Rev. Lett (2004) M. Yogi et al. Phys. Rev. Lett. 93, (2004) Kitaoka Laboratory Takuya Fujii Unconventional.
Shimizu Lab. M1 Takuya Yamauchi
Fabrication of (Fe,Mn)3O4 nanowires using a sidewall deposition method
Superconducting properties in filled-skutterudite PrOs4Sb12
Metals I: Free Electron Model
SU2 カラー NJL モデルのボソナイゼー ションと高温高密度での状態方程式 土岐 博( RCNP/Osaka ) W. Weise (TMU/Muenchen)
1 SHIMIZU Group ONODA Suzue Metallization and molecular dissociation of SnI 4 under pressure Ref: A.L. Chen, P.Y. Yu, M.P. Pasternak, Phys. Rev. B. 44,
Superconductivity and non-Fermi-liquid behavior of Ce 2 PdIn 8 V. H. Tran et al., PHYSICAL REVIEW B 83, (2011) Kitaoka Lab. M1 Ryuji Michizoe.
Non-Fermi Liquid Behavior in Weak Itinerant Ferromagnet MnSi Nirmal Ghimire April 20, 2010 In Class Presentation Solid State Physics II Instructor: Elbio.
Introduction to Semiconductor Technology. Outline 3 Energy Bands and Charge Carriers in Semiconductors.
Fe As A = Ca, Sr, Ba Superconductivity in system AFe 2 (As 1-x P x ) 2 Dulguun Tsendsuren Kitaoka Lab. Division of Frontier Materials Sc. Department of.
Helical Spin Order in SrFeO 3 and BaFeO 3 Zhi Li Yukawa Institute for Theoretical Physics (YITP) Collaborator: Robert Laskowski (Vienna Univ.) Toshiaki.
BASICS OF SEMICONDUCTOR
Physics 541 A quantum approach to condensed matter physics.
Anisotropic Spin Fluctuations and Superconductivity in ‘115’ Heavy Fermion Compounds : 59 Co NMR Study in PuCoGa 5 Kazuhiro Nishimoto Kitaoka lab. S.-H.
Pressure Dependence of Superconductivity of Iron Chalcogenides
A new type Iron-based superconductor ~K 0.8 Fe 2-y Se 2 ~ Kitaoka lab Keisuke Yamamoto D.A.Torchetti et al, PHYSICAL REVIEW B 83, (2011) W.Bao et.
Lecture schedule October 3 – 7, 2011
Chapter 7 The electronic theory of metal Objectives At the end of this Chapter, you should: 1. Understand the physical meaning of Fermi statistical distribution.
Chapter 7 in the textbook Introduction and Survey Current density:
Quantum Efficiency Improvement of Polarized Electron Source using Strain compensated Superlattice photocathode N. Yamamoto 1, X.G. Jin 1, T. Miyauchi 3,
Thermal Conduction in Metals and Alloys Classical Approach From the kinetic theory of gases ) where, l is mean free path.
Free electron Fermi gas ( Sommerfeld, 1928 ) M.C. Chang Dept of Phys counting of states Fermi energy, Fermi surface thermal property: specific heat transport.
Kondo Effect Ljubljana, Author: Lara Ulčakar
Investigation of laser energy absorption by ablation plasmas
Electrical Properties of Materials
Fermi Wavevector 2-D projection ky of 3-D k-space dk
Solids and semiconductors
Free electron Fermi gas (Sommerfeld, 1928)
Liquefying a gas by applying pressure
Continuous Change of Landau Renormalization from Heavy Fermion to Mixed Valence in Ce1-xYbxCoIn5 Zhaofeng Ding, J. Zhang, C. Tan, K. Huang, Lei Shu (Fudan.
Superconductivity Res. T
Yoshida Lab Tatsuo Kano
Chap 6 The free Fermi gas and single electron model
Chapter 11 Liquids, solids, and intermolecular forces
Liquefying a gas by applying pressure
Presentation transcript:

Kazuki Kasano Shimizu Group Wed M1 Colloquium Study of Magnetic Ordering in YbPd Reference R.Pott et al, Phys.Rev.Lett.54, (1985) 1/13

Contents  Introduction - Heavy fermion compounds - Motivation  Measurements  Results  Summary  My study (重い電子系化合物) 2/13

Introduction  Difference of specific heat Normal metal γ : Electronic specific heat AT 2 : Lattice specific heat C/T T2T2 0 Heavy fermion compounds Ce x La 1- x Cu 6 log 10 T C/T (J/K 2 ・ mol) Decrease Increase 三宅和正 著 「重い電子とは何か」 岩波書店 Electronic specific heat is different from normal metal ! 3/13

Introduction  Electronic specific heat Electronic specific heat is given by free electron model. m : effective mass of electrons (電子の有効質量) n : density of electrons (電子密度) Electronic specific heat becomes large. m becomes large. = Heavy !! 4/13

Introduction  Ce, Yb Ce 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 4f 1 5s 2 5p 6 5d 1 6s 2 Xe shell Localized or conduction electron ? Conduction electrons n(r) r/r B n(r) : Distribution of electrons r B : Bohr radius (ボーア半径) Ce Part of 4f electrons are mixed with conduction electrons ! RKKY interaction and Kondo effect 5/13 ( 局在 )

Introduction  Two interactions 4f electron’s spin Conduction electron’s spin Spin singlet state Kondo effect quenches spin ! Kondo effect RKKY interaction RKKY interaction makes spin stable ! 6/13 ( スピン一重項基底状態 ) ( 遮蔽する )

Introduction  Competition In Ce and Yb compounds... At high temperature, there is no magnetic ordering. At low temperature( ~ 10 K), magnetic ordering occurs. Kondo effect is dominant. RKKY interaction is dominant. Competition ! 7/13 ( 競合 )

Introduction  Motivation YbPd, Yb 3 Pd 4, YbIr 2 There had been few magnetic ordering. Yb compounds Magnetic ordering has been found frequently. Ce compounds 8/13

Measurements  Specific heat (T = 1.5 ~ 300 K)  Thermal expansion (T = 1.5 ~ 300 K)  Electrical resistivity (T = 40 mK ~ 300 K)  Magnetic susceptibility (T = 40 mK ~ 300 K, H = 1.72 mGauss) 9/13

Results T(K) ΔC(J/mol ・ K) T(K) C(J/mol ・ K) T(K) Δα(10 -6 K -1 ) α(10 -6 K -1 )  Specific heat and thermal expansion 125K 105K 1.9K 125K 105K 1.9K Specific heat is larger than LuPd. Some anomalies are found. These anomalies are structural. They are found at the same temperatures the case of specific heat. 10/13

Results T(K) ρ(10 -6 Ωcm) T(K) χ(emu/mol) H =1.72(mGauss)  Electrical resistivity and magnetic susceptibility 0.5K 1.9K 0.5K Electrical resistivity is larger than LuPd. At 0.5 K, a new anomaly is found. About under 2 K, the magnetic ordering occurs. A hysteresis is found at 0.5 K. 11/13

Summary  At high temperature Kondo effect is dominant and there is no magnetic ordering. Two structural phase transitions are found at 125, 105 K.  At low temperature RKKY interaction overcomes Kondo effect and magnetic ordering occurs at about 2 K. Magnetic phase transition is found at 0.5 K. YbPd 12/13

My study 13/13 Kondo effectRKKY interaction Competition YbPd Pressure What happen...?

Appendix Electron Force Interaction with lattice m changes ! This is effective mass. m*m*  Effective mass In vacuum In crystal

Appendix J cf D c (ε F ) kBTkBT J cf : c-f Exchange interaction D c (ε F ) : Density of state at Fermi energy  Doniach phase diagram

Appendix Valence T(K)  Calculation of valence Anomalies at 125K and 105K should be structural. They falsify the valence determination with the volume anomaly. As a result, YbPd become mixed-valent state. (Valence changes 2.82 at 300K to 2.80 near 0K) (価数)