Geometry Chapter 5 Review.

Slides:



Advertisements
Similar presentations
5.1 Bisector, Medians, and Altitudes
Advertisements

OBJECTIVE: 1) BE ABLE TO IDENTIFY THE MEDIAN AND ALTITUDE OF A TRIANGLE 2) BE ABLE TO APPLY THE MID-SEGMENT THEOREM 3) BE ABLE TO USE TRIANGLE MEASUREMENTS.
Chapter 5. Vocab Review  Intersect  Midpoint  Angle Bisector  Perpendicular Bisector  Construction of a Perpendicular through a point on a line Construction.
Warm- up Type 2 writing and Construction Write your own definition and draw a picture of the following: Angle Bisector Perpendicular Bisector Draw an acute.
Relationships within triangles
5-3 Concurrent Lines, Medians, Altitudes
MORE TRIANGLES Chapter 5 Guess What we will learn about Geometry Unit Properties of Triangles 1.
Medians, Altitudes and Concurrent Lines Section 5-3.
Points of Concurrency Line Segments Triangle Inequalities.
Unit 5.
Chapter 5 Relationships within Triangles In this chapter you will learn how special lines and segments in triangles relate.
TheoremIfThen If a segment joins the midpoints of two sides of a triangle, then the segment is parallel to the third side and is half the distance. D.
Chapter 5.1 Common Core - G.CO.10 Prove theorems about triangles…the segment joining the midpoint of two sides of a triangle is parallel to the third side.
Geometry Unit 5: Triangle Parts.
introducing Chapter 5 Relationships with Triangles
5.3 - Concurrent Lines, Medians, and Altitudes
Geometry Foldable Use this foldable to go with the Euler Points learned in Chapter 5 Circumcenter Incenter Centroid Orthocenter Make your foldable using.
Chapter 5.3 Concurrent Lines, Medians, and Altitudes
CHAPTER 5 Relationships within Triangles By Zachary Chin and Hyunsoo Kim.
Special Segments in Triangles Surrrre they are…. There are 4 special segments in a triangle. segments in a triangle. When all the segments of a type are.
Day 36 Triangle Segments and Centers. Today’s Agenda Triangle Segments Perpendicular Bisector Angle Bisector Median Altitude Triangle Centers Circumcenter.
Objectives To define, draw, and list characteristics of: Midsegments
VocabTheoremsPoints of Concurrency What’s Wrong? Solve It!Anything Goes… $ 100 $200 $300 $400 $500 J ΣθPARδY ! Mαth math Mαth JΣθPARδY! was created by.
By: Isaac Fernando and Kevin Chung.  Do Now: what is a point of concurrency?
5.3: Concurrent Lines, Medians and Altitudes Objectives: To identify properties of perpendicular bisectors and angle bisectors To identify properties of.
Geometry Grab your clicker and get ready for the warm-up.
Unit 5 Notes Triangle Properties. Definitions Classify Triangles by Sides.
Points of Concurrency Where multiple lines, segments rays intersect, have specific properties.
Points of Concurrency Triangles.
5.4 Medians and Altitudes A median of a triangle is a segment whose endpoints are a vertex and the midpoint of the opposite side. –A triangle’s three medians.
Perpendicular Bisectors ADB C CD is a perpendicular bisector of AB Theorem 5-2: Perpendicular Bisector Theorem: If a point is on a perpendicular bisector.
Geometry B POINTS OF CONCURRENCY. The intersection of the perpendicular bisectors. CIRCUMCENTER.
Chapter 10 Section 3 Concurrent Lines. If the lines are Concurrent then they all intersect at the same point. The point of intersection is called the.
Points of Concurrency The point where three or more lines intersect.
Chapter 5: Relationships in Triangles. Lesson 5.1 Bisectors, Medians, and Altitudes.
Chapters 3.7 – 3.8 “Nothing in life is to be feared, it is only to be understood.” Marie Cure.
Points of Concurrency MM1G3e Students will be able to find and use points of concurrency in triangles.
4.5 isosceles and Equilateral Triangles -Theorem 4.3: Isosceles Triangle theorem says if 2 sides of a triangle are congruent, then the angles opposite.
Geometry Sections 5.2 & 5.3 Points of Concurrency.
Medians, and Altitudes. When three or more lines intersect in one point, they are concurrent. The point at which they intersect is the point of concurrency.
Special lines in Triangles and their points of concurrency Perpendicular bisector of a triangle: is perpendicular to and intersects the side of a triangle.
Unit Essential Question: How do you use the properties of triangles to classify and draw conclusions?
Points of Concurrency Objective: Students will understand terms of concurrency, how to construct them and what they do.
Bisectors, Medians, and Altitudes
Section 5 – 3 Concurrent Lines, Medians, and Altitudes
Relationships within Triangles
5.1 Midsegments of Triangles
Medians, Altitudes and Perpendicular Bisectors
Special Segments in a Triangle
Triangle Centers Points of Concurrency
Perpendicular Bisector
You need your journal The next section in your journal is called special segments in triangles You have a short quiz.
Vocabulary and Examples
Special Segments in Triangles
If we use this next year and want to be brief on the concurrency points, it would be better to make a table listing the types of segments and the name.
Bisectors, Medians and Altitudes
Geometry Lesson 5.4.
Triangle Segments.
Definition of a Median of a Triangle A median of a triangle is a segment whose endpoints are a vertex and a midpoint of the opposite side.
Centroid Theorem By Mario rodriguez.
Points of Concurrency Lessons
Section 6.6 Concurrence of Lines
5.3 Concurrent Lines, Medians, and Altitudes
Objectives: To define points of concurrency in triangles
DO NOW Complete the 4 problems at the top of your worksheet.
Bisectors, Medians, and Altitudes
Altitude, perpendicular bisector, both, or neither?
Unit 6 Test Review
concurrency that we will be discussing today.
Presentation transcript:

Geometry Chapter 5 Review

The point of concurrency for perpendicular bisectors is called the __________________. Incenter Orthocenter Circumcenter Centroid 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

The point of concurrency for angle bisectors is called the __________________. Incenter Orthocenter Circumcenter Centroid 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Three or more lines that intersect at the same point are _______ Perpendicular Current Parallel Skew Concurrent 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

The point of concurrency for altitudes is called the __________________. Incenter Orthocenter Circumcenter Centroid 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

The point of concurrency for medians is called the __________________. Incenter Orthocenter Circumcenter Centroid 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

The __________________ is the same distance from each vertex. Incenter Orthocenter Circumcenter Centroid 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

The __________________ is the same distance from each side. Incenter Orthocenter Circumcenter Centroid 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

The __________________ is the balance point or center of mass of a triangle. Incenter Orthocenter Circumcenter Centroid 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Perpendicular Bisectors The center of a circle inscribed in the triangle is produced by concurrent ____________. Altitudes Angle Bisectors Medians Perpendicular Bisectors 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Perpendicular Bisectors The center of a circle circumscribed about the triangle is produced by concurrent ____________. Altitudes Angle Bisectors Medians Perpendicular Bisectors 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

True or False True False 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

True or False True False 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Solve for x 3 13 21 43.5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Team Scores 11.15 Girls 10 Boys

Solve for BD 3 4 5 8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Solve for CE 3 4 5 8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

a Centroid Circumcenter Incenter Orthocenter 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Solve for GE 4 6 9 12 18 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Solve for GC 2.5 5 7.5 10 12.5 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Solve for GB 6 9 12 18 24 36 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

An altitude is always perpendicular to the opposite side of its vertex. True False 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

The orthocenter is the center of a triangle. True False 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Vertices Midpoints Angles Sides Orthocenters A midsegment of a triangle connects two _______. (Choose the most precise answer.) Vertices Midpoints Angles Sides Orthocenters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

A midsegment is _____ to the third side of a triangle. Concurrent Parallel Perpendicular Skew Current 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

A midsegment is ____ the length of the third side. Double Two-thirds of Equidistant to Half of One-fourth of Equal to 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Team Scores 17.55 Girls 16.53 Boys

Solve for DC 5 8 10 16 20 32 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Solve for x given BD = 5x + 3 and AE = 6x + 9 – 6 1.5 3 0.75 None of the above 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Order the sides from least to greatest AB, BC, AC BC, AC, AB AC, AB, BC BC, AB, AC AB, AC, BC AC, BC, AB 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Order the angles from least to greatest Angles A, B, C Angles B, C, A Angles C, A, B Angles A, C, B Angles B, A, C Angles C, B, A 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Will sides of length 8, 11, and 20 make a triangle? Yes No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Will sides of length 7, 10, and 16 form a triangle? Yes No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

A triangle has two sides of length 6 and 11 A triangle has two sides of length 6 and 11. The length of the third side of the triangle must be more than …… 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

A triangle has two sides of length 5 and 8 A triangle has two sides of length 5 and 8. The length of the third side of the triangle must be less than …… 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Order the sides from least to greatest AB, AD, AC, BC, CD AB, BC, AC, CD, AD AD, CD, AC, BC, AB AD, AC, CD, AB, BC CD, AD, AC, BC, AB None of the above 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Team Scores 20.41 Girls 19.78 Boys