OPIM 303-Lecture #8 Jose M. Cruz Assistant Professor.

Slides:



Advertisements
Similar presentations
Chap 12-1 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chapter 12 Simple Regression Statistics for Business and Economics 6.
Advertisements

Forecasting Using the Simple Linear Regression Model and Correlation
Regresi Linear Sederhana Pertemuan 01 Matakuliah: I0174 – Analisis Regresi Tahun: Ganjil 2007/2008.
Uji Kelinearan dan Keberartian Regresi Pertemuan 02 Matakuliah: I0174 – Analisis Regresi Tahun: Ganjil 2007/2008.
© 2001 Prentice-Hall, Inc.Chap 13-1 BA 201 Lecture 21 Autocorrelation and Inferences about the Slope.
LECTURE 3 Introduction to Linear Regression and Correlation Analysis
Chapter 14 Introduction to Linear Regression and Correlation Analysis
Chapter 12 Simple Regression
Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc. Chap 13-1 Chapter 13 Simple Linear Regression Basic Business Statistics 11 th Edition.
Chapter 13 Introduction to Linear Regression and Correlation Analysis
Fall 2006 – Fundamentals of Business Statistics 1 Chapter 13 Introduction to Linear Regression and Correlation Analysis.
1 Pertemuan 13 Uji Koefisien Korelasi dan Regresi Matakuliah: A0392 – Statistik Ekonomi Tahun: 2006.
Statistics for Managers Using Microsoft Excel, 5e © 2008 Prentice-Hall, Inc.Chap 13-1 Statistics for Managers Using Microsoft® Excel 5th Edition Chapter.
Pengujian Parameter Koefisien Korelasi Pertemuan 04 Matakuliah: I0174 – Analisis Regresi Tahun: Ganjil 2007/2008.
Chapter 12 Simple Linear Regression
Chapter Topics Types of Regression Models
Linear Regression and Correlation Analysis
Chapter 13 Introduction to Linear Regression and Correlation Analysis
Linear Regression Example Data
Korelasi dalam Regresi Linear Sederhana Pertemuan 03 Matakuliah: I0174 – Analisis Regresi Tahun: Ganjil 2007/2008.
© 2000 Prentice-Hall, Inc. Chap Forecasting Using the Simple Linear Regression Model and Correlation.
Pertemua 19 Regresi Linier
Simple Linear Regression. Chapter Topics Types of Regression Models Determining the Simple Linear Regression Equation Measures of Variation Assumptions.
Chapter 14 Introduction to Linear Regression and Correlation Analysis
Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc. Chap 13-1 Chapter 13 Simple Linear Regression Basic Business Statistics 10 th Edition.
Chapter 7 Forecasting with Simple Regression
Chapter 13 Simple Linear Regression
1 Simple Linear Regression 1. review of least squares procedure 2. inference for least squares lines.
Statistics for Business and Economics 7 th Edition Chapter 11 Simple Regression Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall Ch.
Chapter 13 Simple Linear Regression
Introduction to Linear Regression and Correlation Analysis
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 12-1 Chapter 12 Simple Linear Regression Statistics for Managers Using.
Purpose of Regression Analysis Regression analysis is used primarily to model causality and provide prediction –Predicts the value of a dependent (response)
Chapter 14 Simple Regression
1 1 Slide © 2005 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS St. Edward’s University Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
Statistics for Business and Economics 7 th Edition Chapter 11 Simple Regression Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall Ch.
© 2003 Prentice-Hall, Inc.Chap 13-1 Basic Business Statistics (9 th Edition) Chapter 13 Simple Linear Regression.
You want to examine the linear dependency of the annual sales of produce stores on their size in square footage. Sample data for seven stores were obtained.
Business Statistics: A First Course, 5e © 2009 Prentice-Hall, Inc. Chap 12-1 Correlation and Regression.
Introduction to Linear Regression
Chap 12-1 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. A Course In Business Statistics 4 th Edition Chapter 12 Introduction to Linear.
Linear Regression and Correlation Analysis. Regression Analysis Regression Analysis attempts to determine the strength of the relationship between one.
EQT 373 Chapter 3 Simple Linear Regression. EQT 373 Learning Objectives In this chapter, you learn: How to use regression analysis to predict the value.
Applied Quantitative Analysis and Practices LECTURE#23 By Dr. Osman Sadiq Paracha.
Statistical Methods Statistical Methods Descriptive Inferential
Chap 13-1 Copyright ©2012 Pearson Education, Inc. publishing as Prentice Hall Chap 13-1 Chapter 13 Simple Linear Regression Basic Business Statistics 12.
Statistics for Business and Economics 8 th Edition Chapter 11 Simple Regression Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall Ch.
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 13-1 Introduction to Regression Analysis Regression analysis is used.
Lecture 10: Correlation and Regression Model.
Applied Quantitative Analysis and Practices LECTURE#25 By Dr. Osman Sadiq Paracha.
© 2001 Prentice-Hall, Inc.Chap 13-1 BA 201 Lecture 18 Introduction to Simple Linear Regression (Data)Data.
Statistics for Managers Using Microsoft® Excel 5th Edition
Introduction to Multiple Regression Lecture 11. The Multiple Regression Model Idea: Examine the linear relationship between 1 dependent (Y) & 2 or more.
Chapter 12 Simple Linear Regression.
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 12-1 Chapter 12 Simple Linear Regression Statistics for Managers Using.
© 2001 Prentice-Hall, Inc.Chap 13-1 BA 201 Lecture 19 Measure of Variation in the Simple Linear Regression Model (Data)Data.
Conceptual Foundations © 2008 Pearson Education Australia Lecture slides for this course are based on teaching materials provided/referred by: (1) Statistics.
BUSINESS MATHEMATICS & STATISTICS. Module 6 Correlation ( Lecture 28-29) Line Fitting ( Lectures 30-31) Time Series and Exponential Smoothing ( Lectures.
Chapter 13 Simple Linear Regression
Inference for Least Squares Lines
Statistics for Managers using Microsoft Excel 3rd Edition
Linear Regression and Correlation Analysis
Simple Linear Regression
Chapter 11 Simple Regression
Chapter 13 Simple Linear Regression
PENGOLAHAN DAN PENYAJIAN
Chapter 13 Simple Linear Regression
Presentation transcript:

OPIM 303-Lecture #8 Jose M. Cruz Assistant Professor

Session 8 - Overview Simple Regression Model Determining the best fit “Goodness of Fit” –R 2 –Confidence Intervals –Hypothesis tests –Residual Analysis

Purpose of Regression Analysis Regression analysis is used primarily to model causality and provide prediction –Predicts the value of a dependent (response) variable based on the value of at least one independent (explanatory) variable –Explains the effect of the independent variables on the dependent variable

Types of Regression Models Positive Linear Relationship Negative Linear Relationship Relationship NOT Linear No Relationship

Simple Linear Regression Model Relationship between variables is described by a linear function The change of one variable causes the change in the other variable A dependency of one variable on the other

Population Regression Line (conditional mean) Population Linear Regression average value (conditional mean) Population regression line is a straight line that describes the dependence of the average value (conditional mean) of one variable on the other Population Y intercept Population Slope Coefficient Random Error Dependent (Response) Variable Independent (Explanatory) Variable

Population Linear Regression (continued) = Random Error Y X (Observed Value of Y) = Observed Value of Y (Conditional Mean)

estimate Sample regression line provides an estimate of the population regression line as well as a predicted value of Y Sample Linear Regression Sample Y Intercept Sample Slope Coefficient Residual Sample Regression Line (Fitted Regression Line, Predicted Value)

Sample Linear Regression and are obtained by finding the values of and that minimizes the sum of the squared residuals estimate provides an estimate of estimate provides and estimate of (continued)

Sample Linear Regression (continued) Y X Observed Value

Interpretation of the Slope and the Intercept is the average value of Y when the value of X is zero. measures the change in the average value of Y as a result of a one-unit change in X.

estimated is the estimated average value of Y when the value of X is zero. estimated is the estimated change in the average value of Y as a result of a one-unit change in X. (continued) Interpretation of the Slope and the Intercept

Simple Linear Regression: Example You want to examine the linear dependency of the annual sales of produce stores on their size in square footage. Sample data for seven stores were obtained. Find the equation of the straight line that fits the data best. Annual Store Square Sales Feet($1000) 1 1,726 3, ,542 3, ,816 6, ,555 9, ,292 3, ,208 5, ,313 3,760

Scatter Diagram: Example Excel Output

Equation for the Sample Regression Line: Example From Excel Printout:

Excel Output Regression Statistics Multiple R R Square Adjusted R Square Standard Error Observations7 ANOVA dfSSMSF Significance F Regression Residual Total Coefficient s Standard Errort StatP-valueLower 95%Upper 95% Intercept X Variable

Graph of the Sample Regression Line: Example Y i = X i 

Interpretation of Results: Example The slope of means that for each increase of one unit in X, we predict the average of Y to increase by an estimated units. The model estimates that for each increase of one square foot in the size of the store, the expected annual sales are predicted to increase by $1487.

How Good is the regression? R 2 Residual Plots Analysis of Variance Confidence Intervals Hypothesis (t) tests

Coefficient of Correlation Measures the strength of the linear relationship between two quantitative variables

The Coefficient of Determination Denoted by R 2 Measures the proportion of variation in Y that is explained by the independent variable X in the regression model

Coefficients of Determination (r 2 ) and Correlation (r) r 2 = 1, r 2 =.8,r 2 = 0, Y Y i =b 0 +b 1 X i X ^ Y Y i =b 0 +b 1 X i X ^ Y Y i =b 0 +b 1 X i X ^ Y Y i =b 0 +b 1 X i X ^ r = +1 r = -1 r = +0.9r = 0

Linear Regression Assumptions 1.Linearity 2.Normality –Y values are normally distributed for each X –Probability distribution of error is normal 2.Homoscedasticity (Constant Variance) 3.Independence of Errors

Residual Analysis Purposes –Examine linearity –Evaluate violations of assumptions Graphical Analysis of Residuals –Plot residuals vs. X i, Y i and time

Residual Analysis for Linearity Not Linear Linear X e e X Y X Y X

Y values are normally distributed around the regression line. For each X value, the “spread” or variance around the regression line is the same. Variation of Errors around the Regression Line X1X1 X2X2 X Y f(e) Sample Regression Line

Residual Analysis for Homoscedasticity Heteroscedasticity Homoscedasticity SR X X Y X X Y

Residual Analysis:Excel Output for Produce Stores Example Excel Output

Residual Analysis for Independence Not Independent Independent e e Time Residual is plotted against time to detect any autocorrelation No Particular PatternCyclical Pattern Graphical Approach

The ANOVA Table in Excel ANOVA dfSSMSF Significance F RegressionpSSR MSR =SSR/p MSR/MSE P-value of the F Test Residualsn-p-1SSE MSE =SSE/(n-p-1) Totaln-1SST

Measures of Variation The Sum of Squares: Example Excel Output for Produce Stores

Measures of Variation: Produce Store Example Excel Output for Produce Stores r 2 =.94 94% of the variation in annual sales can be explained by the variability in the size of the store as measured by square footage

Inference about the Slope: t Test t test for a population slope –Is there a linear dependency of Y on X ? Null and alternative hypotheses –H 0 :  1 = 0(no linear dependency) –H 1 :  1  0(linear dependency) Test statistic –

Example: Produce Store Data for Seven Stores: Estimated Regression Equation: The slope of this model is Is square footage of the store affecting its annual sales?  Annual Store Square Sales Feet($000) 1 1,726 3, ,542 3, ,816 6, ,555 9, ,292 3, ,208 5, ,313 3,760 Y i = X i

Inferences about the Slope: t Test Example H 0 :  1 = 0 H 1 :  1  0  .05 df  = 5 Critical Value(s): Test Statistic: Decision: Conclusion: There is evidence that square footage affects annual sales. t Reject.025 From Excel Printout Reject H 0

Inferences about the Slope: Confidence Interval Example Confidence Interval Estimate of the Slope: Excel Printout for Produce Stores At 95% level of confidence, the confidence interval for the slope is (1.062, 1.911). Does not include 0. Conclusion: There is a significant linear dependency of annual sales on the size of the store.

Confidence Intervals for Estimators Regression Statistics Multiple R R Square Adjusted R Square Standard Error Observations7 ANOVA dfSSMSF Significance F Regression Residual Total Coefficient s Standard Errort StatP-valueLower 95%Upper 95% Intercept X Variable