New Progress of High Current Gasdynamic Ion Source

Slides:



Advertisements
Similar presentations
(not visible on the picture)
Advertisements

Superconducting Ion Source Development in Berkeley
EuCARD 2nd ANNUAL MEETING, CNRS-Paris May 2011 ECR Ion Sources R&D at LPSC * - Grenoble T. Lamy J. Angot, M. Marie-Jeanne, T. Thuillier, P. Sortais.
Pascal Sortais – LPSC/SSI - SFP Porquerolles Institut of Nuclear Physics (INS) Institut des Sciences Nucléaires (ISN) Cosmology and Subatomic Physic.
EXPERIMENTAL STUDY OF EM RADIATION FROM THE FASTER- THAN-LIGHT VACUUM MACROSCOPIC SOURCE A. V. Bessarab, S.P. Martynenko, N.A. Prudkoi, A.V. Soldatov*,
W. Udo Schröder, 2004 Instrumentation 1. W. Udo Schröder, 2004 Instrumentation 2 Probes for Nuclear Processes To “see” an object, the wavelength of the.
A Proposal of a Polarized 3 He ++ Ion Source with Penning Ionizer for JINR N.N. Agapov, Yu.N. Filatov, V.V. Fimushkin, L.V. Kutuzova, V.A. Mikhailov, Yu.A.
KEK (High Energy Accelerator Organization), Japan
Ion Injector Design Andrew Seltzman.
Alexandr Drozhdin March 16, 2005 MI-10 Injection.
Runaway Electron Mitigation Collaboration on J-TEXT David Q. Hwang UC Davis Sixth US-PRC Magnetic Fusion Collaboration Workshop Collaborating Institutions:
Preinjector Group Collider-Accelerator Department
EE 403 (or 503) Introduction to plasma Processing Fall 2011 Title of the project Your name.
Ion Beam Cocktail Development and ECR Ion Source Plasma Physics Experiments at JYFL Olli Tarvainen 11th International Conference on Heavy Ion Accelerator.
A Materials Evaluation Neutron Source Based on the Gas Dynamic Trap (DTNS) One Element in an Urgently Needed Comprehensive Fusion Materials Program Based.
Giovanni Ciavola I3 EURONS-2 COMPLECS Town Meeting, Sept. 19th, 2007, Helsinki 1 INFN - GSI - GANIL - LPSC - JYFL - KVI CERN - ATOMKI- TSL - NIPNE - IKF-
NON-EQUILIBRIUM HEAVY GASES PLASMA MHD-STABILIZATION IN AXISYMMETRIC MIRROR MAGNETIC TRAP A.V. Sidorov 2, P.A. Bagryansky 1, A.D. Beklemishev 1, I.V. Izotov.
Mass Spectrometry Brief introduction (part1) I. Sivacekflerovlab.jinr.ru 2012 Student Practice in JINR Fields of Research 1.oct.2012.
1 ST workshop 2005 Numerical modeling and experimental study of ICR heating in the spherical tokamak Globus-M O.N.Shcherbinin, F.V.Chernyshev, V.V.Dyachenko,
COULOMB ’05 Experiments with Cooled Beams at COSY A.Lehrach, H.J.Stein, J. Dietrich, H.Stockhorst, R.Maier, D.Prasuhn, V.Kamerdjiev, COSY, Juelich, I.Meshkov,
“Ultra Pure and High Intensity Multiply Charged Radioactive Ion Beams” Associated institutes: IPNS KEK, Japan S. Jeong, N. Imai, M. Oyaizu, H. Myiatake.
E. Beebe Test EBIS Results EBIS Project Technical Review 1/27/2005 An EBIS-based RHIC Preinjector - Test EBIS Results Ed Beebe Preinjector Group Collider-Accelerator.
December 2007ESF-Workshop, Athens, Greece University of Jyväskylä, Department of Physics ECR ion source for the highly charged, intensive ion beams H.
Vacuum Spark Ion Source: High Charge States Ion Beam E.M. Oks, G.Yu. Yushkov, A.G. Nikolaev, and V.P. Frolova High Current Electronics Institute, Siberian.
About the 8 keV plasma at the Galactic Center CEA, Saclay Belmont R. Tagger M. UCLA Muno M. Morris M. Cowley S. High Energy Phenomena in the Galactic Center.
Radioactive ion beam facilities How does they work ? 2012 Student Practice in JINR Fields of Research 9.oct.2012 I. Sivacekflerovlab.jinr.ru.
Neutron Generator for BNCT Based on High Current ECR Ion Source with Gyrotron Plasma Heating V.A. Skalyga 1, I.V. Izotov 1, S.V. Golubev 1, A.V. Sidorov.
Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University.
ICIS2015,Aug , 2015, New York, USA Further improvement of RIKEN 28GHz SC-ECRIS for production of highly charged U ion beam T. Nakagawa (RIKEN, Nishina.
Diagnostics for intense e-cooled ion beams by Vsevolod Kamerdzhiev Forschungszentrum Jülich, IKP, COSY ICFA-HB2004, Bensheim, October 19, 2004.
ICIS2015 in NY Y.HIGURASHI Y. Higurashi (RIKEN Nishina center) 1.Introduction RIKEN RIBF and RIKEN 28GHz SC-ECRIS 2.Emittance measurements 1.4D.
Mats Lindroos Future R&D: beta-beam Mats Lindroos.
Use of the focusing multi-slit ion optical system at the diagnostic injector RUDI A.Listopad 1, J.Coenen 2, V.Davydenko 1, A.Ivanov 1, V.Mishagin 1, V.Savkin.
Results of the argon beam test at Linac3 D. Küchler BE/ABP/HSL Including feedback from R. Scrivens and M. Bodendorfer.
Giovanni Ciavola, JRA-07 ISIBHI JRA-07 Ion Sources for Intense Beams of Heavy Ions (ISIBHI) EURONS PCC Meeting, Groningen, Holland, December 2006.
experiences of Ion Source commissioning at CEA Saclay
RF source, volume and caesiated extraction simulations (e-dump)
Pekka Suominen 2010 CERN Plasma ion sources for radioactive molecular ion beams.
Source of Polarized Ions for the JINR accelerator complex (September 2015) V.V. Fimushkin, A.D. Kovalenko, L.V. Kutuzova, Yu.V. Prokofichev, V.B. Shutov.
Electron Sources for ERLs – Requirements and First Ideas Andrew Burrill FLS 2012 “The workshop is intended to discuss technologies appropriate for a next.
Developments of the FETS Ion Source Scott Lawrie.
Vladimir ZORIN Institute of Applied Physics Nizhny Novgorod, Russia Additional Partner in EUROnu project ECR task: continuation of work with a 60 GHz ECR.
September 13, 2007 J. Alessi EBIS Project and EBIS as an ionizer for polarized He-3 ? Jim Alessi Work of E. Beebe, A. Pikin, A. Zelenski, A. Kponou, …
Progress of Bunched Beam Electron Cooling Demo L.J.Mao (IMP), H.Zhang (Jlab) On behalf of colleagues from Jlab, BINP and IMP.
Studies on 2.45 GHz microwave ion sources Abhishek Nag IISER, KOLKATA Presented By: G.O. Rodrigues IUAC, New Delhi Supervised By:
Recent progress of RIKEN 28GHz SC-ECRIS for RIBF T. Nakagawa (RIKEN) 1.Introduction RIKEN Radio isotope factory project 2.RIKEN 28GHz SC-ECRIS Structure(Sc-coils,
Experience with Novosibirsk FEL Getmanov Yaroslav Budker INP, Russia Dec. 2012, Berlin, Germany Unwanted Beam Workshop.
CHARACTERIZATION OF MICROWAVE DISCHARGE ION SOURCE FOR HIGH PROTON BEAM PRODUCTION IN CW AND PULSED MODE Rosalba Miracoli Consegna del premio “Francesco.
RF System and EBIS of RAON
THE CUSP AS A PLASMA CONTAINER (MAGNETIC BOTTLE) Question of the day (1975): Are the holes r ce, r ci or (r ce r ci ) ½ ?
NATIONAL INSTITUTE OF NUCLEAR PHYSICS Legnaro National Laboratories Numerical simulation strategy for the SPES FEBIAD ion source INFN – CISAS collaboration.
PS-ESS and LEBT State of the art Lorenzo Neri Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Sud.
H. Koivisto, EMILIE workshop, rd March 2016, GANIL, France Research of CB ECRIS plasma with the aid of injected 1+ beam H Koivisto 1, O Tarvainen.
Development and applications of submillimeter wave gyrotron FU series
FCC-ee injector complex including Booster Yannis Papaphilippou, CERN Thanks to: M.Aiba (PSI), Ö.Etisken (Ankara Un.), K.Oide (KEK), L.Rinolfi (ESI-JUAS),
SPES Target Group Data…… INFN-CISAS-CNR collaboration The Ablation Ion Source for refractory metal ion beams A preliminary design.
Research and Practical Conference “Accelerators and Radiation technologies for the Futures of Russia” September 2012, Saint-Petersburg Neutron Sources.
Alexander Aleksandrov Spallation Neutron Source Oak Ridge, USA
Development of a new compact 5.8 GHz ECR ion source at LPSC
JLEIC ion source: specifications, design, and R&D prospects
A BASELINE BETA-BEAM Mats Lindroos AB Department, CERN
60 GHz ECR Ion Source for RIB production
A.Smirnov, A.Sidorin, D.Krestnikov
Injector Cyclotron for a Medical FFAG
Machine studies during beam commissioning
Single-frequency operation mode Double-frequency operation mode
Future R&D: beta-beam Mats Lindroos Mats Lindroos.
Poster T8-We-43 Generation of Boron Ion Beams by Vacuum Arc Ion Source with Lanthanum Hexaboride and Boron Carbide Cathodes V. Frolova, A. Nikolaev, E.
Physics Design on Injector I
The GDT device at the Budker Institute of Nuclear Physics is an experimental facility for studies on the main issues of development of fusion systems based.
Presentation transcript:

New Progress of High Current Gasdynamic Ion Source Vadim Skalyga, Sergey Golubev, Ivan Izotov, Sergey Razin, Alexander Sidorov, Alexander Vodopyanov Olli Tarvainen, Hannu Koivisto, Taneli Kalvas Thierry Lamy, Thomas Thuillier Efim Oks, Georgy Yushkov, Aleksey Nikolaev

Outline - Quasi-gasdynamic regime of plasma confinement - SMIS 37 gasdynamic ECR ion source Multicharged ions production Metallic ions production Proton beams extraction Other gasdynamic sources CW gasdynamic ion source Conclusion Institute of Applied Physics RAS, Nizhny Novgorod

Quasi-gasdynamic plasma confinement Institute of Applied Physics RAS, Nizhny Novgorod

Geller and Gasdynamic ECRIS Coulomb electron scattering into the loss-cone (collisionless) (collisional) Quasi-gasdynamic confinement Time of plasma escape Vs – ion sound velocity Leff – effective trap length Institute of Applied Physics RAS, Nizhny Novgorod

Quasi-gasdynamic confinement Plasma confinement Averaged ion charge Collisionless confinement sec Ion current Quasi-gasdynamic confinement cm-3 Institute of Applied Physics RAS, Nizhny Novgorod

Ion charge vs HF Limitation for plasma density: Institute of Applied Physics RAS, Nizhny Novgorod

Geller ECRIS vs Gasdynamic I, mA Gasdynamic ECRIS Argon 100 10 Geller ECRIS 1 q +5 +10 +15 Institute of Applied Physics RAS, Nizhny Novgorod

SMIS 37 gasdynamic ECR ion source Institute of Applied Physics RAS, Nizhny Novgorod

SMIS 37 general view Diagnostic chamber Plasma chamber -wave coupling system Gyrotron Frequency 37,5 or 75 GHz Power up to 100 kW Pulse duration 1 ms Trap magnetic field up to 5 T Institute of Applied Physics RAS, Nizhny Novgorod

SMIS 37 plasma part Faraday cup Institute of Applied Physics RAS, Nizhny Novgorod

SMIS 37 main goals Unique plasma parameters (Ne > 1013 cm-3,   5 ÷ 50 s, Te  50 ÷ 300 eV) High current density ( j  100 ÷ 800 mA/cm2 ) Low emittance values High (unique) flexibility Institute of Applied Physics RAS, Nizhny Novgorod

Multicharged ions production Institute of Applied Physics RAS, Nizhny Novgorod

Charge state distribution Argon Nitrogen Institute of Applied Physics RAS, Nizhny Novgorod

Xenon plasma Institute of Applied Physics RAS, Nizhny Novgorod

Ion charge vs trap length Institute of Applied Physics RAS, Nizhny Novgorod

Experiments with 37 and 75 GHz Ion current, a.u. 75 GHz Analyser magnet current, A Institute of Applied Physics RAS, Nizhny Novgorod

Beam currents 160 mA 30 kV Institute of Applied Physics RAS, Nizhny Novgorod

Metallic ions production Institute of Applied Physics RAS, Nizhny Novgorod

Gasdynamic charge breeding (SMIS 37-75 + MEVVA) MEVVA plasma gun

Additional MEVVA ions stripping Pt+ Pt++ Pt3+ Platinum No ECR heating Additional stripping with optimal parameters Microwave power 60 kW Magnetic field in the plug 2.6 T Vacuum arc current 80 A Pt3+ Pt6+ Pt5+ Pt4+ Fe++ 37 GHz 75 GHz

ECR source of EUV light MEVVA plasmagun Tin cathode Магнитные катушки Microwaves 50 kW@75 GHz MEVVA plasmagun Tin cathode Магнитные катушки Magnetic coils EUV Detector 13.5±1% nm Sn4+ 9+ Sn6+ Time, μs TOF signal Sn+ Sn3+ Sn2+ No microwave heating 50 kW @75 GHz Experiment: 50 W to 4π to 13.5 nm ± 1% η ~ 0.5 % Source size 3 х 3 х 50 mm

Proton and deuteron beams extraction

Beam current measurements

Ion spectrum (Hydrogen, Deuterium) H+, D+  94 % H2+, D2+ < 6 %

Neutron generation Expected neutron flux (100 kV): 5·1010 – 1·1011 s-1 “Low” energy D+ ion beams: D + D --> 3He3 + n 3.26 MeV D + T --> 4He3 + n 17.6 MeV Neutron flux 109 at 45 kV energy Expected neutron flux (100 kV): 5·1010 – 1·1011 s-1 5·1012 – 1·1013 s-1 T-target Targets: TiD2, ZrD2, ScD2 Up to 1,8 D atoms per one sorbent atom

Is SMIS 37-75 the only high current gasdynamic source?

Grenoble 60 GHz ECRIS Gyrotron frequency 60 GHz Power up to 200 kW Pulse duration up to 1 ms Cusp magnetic trap Maximum magnetic field 7 T (injection) 1.8 A/cm2 ! 900 mA/cm2 ECR zone HF Ions O3+ 1.1 mA

should be demonstrated in Grenoble Grenoble source goals High frequency and power High repetition rate Closed ECR zone Effective gas control MHD stability Boundary confinement regimes (probably) The real performance of gasdynamic ECRIS for multicharged ions production should be demonstrated in Grenoble

CW gasdynamic ion source CW gyrotron 24 GHz, 5 kW Simple mirror trap SMIS 24 First test of SMIS 24 was performed More than 10 hours of operation First ion beam was extracted Beam current = 3 mA Ion current density in magnetic mirror = 1 A/cm2

Benefits of gasdynamic ECRIS High current beams Low beam emittance Short leading and trailing edge of the pulse High ionization efficiency Simple scaling of source parameters Institute of Applied Physics RAS, Nizhny Novgorod

Applications High current ion beams for accelerators Deuterium beams for neutron production EUV sources (13,5 nm) Short pulse ion beams production Institute of Applied Physics RAS, Nizhny Novgorod

Thank you for your attention Thanks to our collaborators Thanks a lot to Organizing committee for invitation and opportunity to present this talk