Sudbury, Canada Workshop in Low Radioactivity Techniques 12-13. December 2004 Highly sensitive measurements of 222 Rn emanation and diffusion Grzegorz.

Slides:



Advertisements
Similar presentations
"Jožef Stefan" Institute, Dept. of Surface Engineering and Optoelectronics Slovenian Fusion Association (SFA). MHEST Deuterium retention in ITER -grade:
Advertisements

Possible IDEA Topics for FP7 Stefan Schoenert MPIK Heidelberg.
Purification of Liquid Scintillators for Low Radioactivity Frank Calaprice Princeton University Borexino Experiment 6/14/13 RENO Workshop June ,
Activity measurement of phosphorus-32 in the presence of pure beta-emitting impurities The CSIR Research and Innovation Conference National Metrology Laboratory.
Introduction Radon is a radioactive noble gas in the uranium decay chain. It emanates out of many materials due to its very low chemical reactivity. The.
Surface Sensitive Bolometers (SSB): last development MARISA PEDRETTI INFN - Milano.
Radiation Detection Systems
1 Calor02 Pasadena (USA) March 2002Lino Miramonti - University and INFN Milano Borexino: A Real Time Liquid Scintillator Detector for Low Energy.
A purification plant for liquid argon (nitrogen) Hardy Simgen Max-Planck-Institut für Kernphysik Heidelberg.
DMSAG 14/8/06 Mark Boulay Towards Dark Matter with DEAP at SNOLAB Mark Boulay Canada Research Chair in Particle Astrophysics Queen’s University DEAP-1:
Abstract The Large Underground Xenon (LUX) dark matter detector will use a water shield to reduce background events in the detector. However, a high radon.
GERDA General Meeting, Tübingen, November 2005 Nitrogen and argon radiopurity Grzegorz Zuzel for TG11 MPI-K Heidelberg MPI-K Heidelberg.
Gauges and well logging
High-Vacuum Technology Course
1 Special technique at KRB A: Decontamination of stainless steel parts with phosphoric acid quick processing time reliability less secondary waste maximal.
September 14, 2007Hardy Simgen, TAUP 2007 / Sendai1 Status of the GERDA experiment Hardy Simgen Max-Planck-Institut für Kernphysik Heidelberg on behalf.
Low background facilities at LSM Pia Loaiza ILIAS meeting, Modane January 12 th 2005.
TG 11 overview - Material screening - Hardy Simgen MPI für Kernphysik Heidelberg.
WP3: R&D on ultra low-level detectors and facilities WP3: R&D on ultra low-level detectors and facilities LNGS: status and outlook.
Backgrounds. Their removal and avoidance Tom Shutt Princeton University.
LAUNCH - Low-energy, Astroparticle Underground, Neutrino physics and Cosmology in Heidelberg, Low-level techniques applied in experiments.
GERDA General meeting, Krakow, Poland 222 Rn measurements H. Richter, H. Simgen, G. Zuzel Max-Planck-Institut für Kernphysik, Heidelberg.
IDEA Meeting, MPI-K Heidelberg, October 2004 Techniques for analysis and purification of nitrogen and argon Grzegorz Zuzel MPI-K Heidelberg.
IDEA Meeting, LAL-Orsay, April 2005 Purification of nitrogen (argon) Grzegorz Zuzel MPI-K Heidelberg.
Proposal for high sensitive measurements of 238 U and 232 Th with NAA Ezio Previtali INFN Sez. Milano Milano-Bicocca University ILIAS: JRA1 3rd General.
CsI Photocathode Production and Testing
Building a Radon Counter to Characterize Radon in the Case XENON Detector Nathan Shaman 1 Tom Shutt 1 1 Department of Physics, Case Western Reserve University,
Low-background aspects of GERDA
Lee, Myeong Jae DMRC, Seoul national university
Industrial Air Quality Monitoring. Sampling Protocols Grab vs. Integrated Personal vs. Area.
Getting the first 7 Be detection: scintillator purification, detector response and data analysis in Borexino Marco Pallavicini Università di Genova & INFN.
COUPP: Chicagoland Observatory for Underground Particle Physics (FNAL Test Beam Program T-945) J. Collar, K. Crum, D. Nakazawa, B. Odom, J. Rasmussen,
Temperature dependence of sensor leakage current Contents Introduction Measurement Result Summary Junkichi Asai (RIKEN BNL Research Center) (Hiroki kanoh.
A screening facility for next generation low-background experiments Tom Shutt Laura Cadonati Princeton University.
Status of the BOREXINO experiment Hardy Simgen Max-Planck-Institut für Kernphysik / Heidelberg for the BOREXINO collaboration.
238 U (4.47  10 9 years) 226 Ra (1600 years) 222 Rn (3.82 days) 218 Po (3.10 mins) 214 Pb (26.8 mins) 214 Bi (19.9 mins) 210 Tl (1.30 mins) 214 Po (164.
Emanuela Meroni Univ. & INFN Milano NO-VE April 15-18, 2008 Borexino and Solar Neutrinos Emanuela Meroni Università di Milano & INFN On behalf of the Borexino.
Workshop for Underground experiments and astroparticle physics 1 Radon Environment of Underground Experiment and Detection of Radon Lee, Myeong.
Topical Workshop in Low Radioactivity Techniques, Sudbury, Canada, August 28-29, 2010 Surface cleaning techniques B. Majorowits a, M. Wójcik b, G. Zuzel.
Present and future detectors for Geo-neutrinos: Borexino and LENA Applied Antineutrino Physics Workshop APC, Paris, Dec L. Oberauer, TU München.
INTERNATIONAL PHD PROJECTS IN APPLIED NUCLEAR PHYSICS AND INNOVATIVE TECHNOLOGIES This project is supported by the Foundation for Polish Science – MPD.
M. Misiaszek (Institute of Physics, Jagellonian U., Krakow) on behalf of the Borexino Collaboration Results from the Borexino experiment Kurchatov Inst.
CTF and low background facility at Gran Sasso A. Ianni a, M. Laubenstein a and Y. Suvorov a a INFN, Gran Sasso Laboratory, Assergi (AQ), Italy The Counting.
Isotopic and Nuclear Analytical Techniques for Health and Environment
May 6, 2006Henderson Dusel Capstone Meeting Low Background Counting A Facility Wish List for the New Underground Laboratory F. Calaprice.
VIeme rencontres du Vietnam
Ultra-low background gamma spectrometry 2 nd LSM-Extension Workshop, Valfréjus, 16 October 2009 Pia Loaiza Laboratoire Souterrain de Modane.
GERDA general meeting, Padova Italy, Update on 222 Rn emanation measurements S. Lindemann, H. Richter, H. Simgen, G. Zuzel MPI für Kernphysik,
CTF at Gran Sasso (overview of the hardware) Richard Ford (SNOLAB) (who has not been in the collaboration since 2004) March 19 th 2010.
TG 11 overview / Material screening Hardy Simgen MPI für Kernphysik for Task Group 11.
Study of T 1 relaxation time A proposal to test T 1 using a dilution fridge and SQUID NMA at Royal Hollow University,London.
A screening facility for next generation low-background experiments Tom Shutt Case Western Reserve University.
1 BOREXINO on behalf of the BOREXINO collaboration Zaymidoroga O.A Spokesman from Jinr Bellini G Spokesman.
November 19, 2007Hardy Simgen, IDEA-Meeting Paris Status of the GERDA experiment Hardy Simgen Max-Planck-Institut für Kernphysik Heidelberg on behalf.
Creating a reliable source of pure low-radioactivity argon Henning O. Back – Princeton University Fermilab Detector R&D Review.
IDEA Meeting, , Paris, France New results on the Argon purification Grzegorz Zuzel Max-Planck-Institut für Kernphysik, Heidelberg.
Cryogenic Distillation of Underground Argon Henning O. Back – Princeton U. 2/14/14 Henning Back - Princeton University 1.
ILIAS, Jaca, Spain 5 of December 2006 Se-82 purification: how to control the procedure (Bi-214)? Kornoukhov Vasily INR RAS Moscow.
Low radioactivity argon from underground sources Henning O. Back – Princeton University LIDINE 2013.
Radon Background of Y2L MyeongJae Lee (SNU) 2 nd workshop on Double beta decay Oct 6, 2010, KRISS.
Adsorption of radioactive noble gases in microporous materials Jose Busto CPPM/ Universite d’Aix-Marseille GDR - neutrino Marseille 26 – 27 Novembre.
Akhmatov Z.A1, Khokonov A.Kh1,2, Masaev M.B1, Romanenko V.S1.
SABRE PoP Fluid Handling
David Orr Assessing Radon Exposures from Materials Containing Naturally Occurring Radioactive Material (NORM) David Orr
On measurability of mBq/kg levels of alpha activity
Measurement of surface radioactivity by Alpha/Beta detection
Adsorption techniques for gas purification
• • • Ge measurements for SuperNEMO
Integrated Double-beta-decay European Activity
Presentation transcript:

Sudbury, Canada Workshop in Low Radioactivity Techniques December 2004 Highly sensitive measurements of 222 Rn emanation and diffusion Grzegorz Zuzel Max Planck Institute for Nuclear Physics Heidelberg

Sudbury, Canada Grzegorz ZuzelLRT 2004 Outline Detection of 222 Rn Detection of 222 Rn Investigations of 222 Rn emanation Investigations of 222 Rn emanation Measurements of 222 Rn diffusion Measurements of 222 Rn diffusion Some results Some results Summary Summary

Sudbury, Canada Grzegorz ZuzelLRT 2004 Detection of 222 Rn Low-level proportional counters

Sudbury, Canada Grzegorz ZuzelLRT 2004 Developed for the GALLEX experiment Developed for the GALLEX experiment Handmade at MPI-K (ultra-pure quartz) Handmade at MPI-K (ultra-pure quartz) Active volume ~1 cm 3 Active volume ~1 cm 3 α- detection in case of 222 Rn measurements α- detection in case of 222 Rn measurements Background ~0.5 cpd for E > 50 keV Background ~0.5 cpd for E > 50 keV Detection efficiency 50% Detection efficiency 50% Special filling procedure is required Special filling procedure is required Detection of 222 Rn – counters

Sudbury, Canada Grzegorz ZuzelLRT 2004 Detection of 222 Rn – filling line Sample purification Mixing with counting Mixing with counting gas (P10) gas (P10) Counter filling Counter filling Absolute detection limit:~30 µBq limit: ~30 µBq (15 atoms) (15 atoms)

Sudbury, Canada Grzegorz ZuzelLRT 2004 Outline Detection of 222 Rn Detection of 222 Rn Investigations of 222 Rn emanation Investigations of 222 Rn emanation Measurements of 222 Rn diffusion Measurements of 222 Rn diffusion Some results Some results Summary Summary

Sudbury, Canada Grzegorz ZuzelLRT 2004 Investigations of 222 Rn emanation Emanation chambers Made out of electro-polished stainless steel Made out of electro-polished stainless steel Two of them are available: 20 l and 80 l Two of them are available: 20 l and 80 l Detection limits: 60/150 µBq Detection limits: 60/150 µBq Glass vials For small samples (up to 1 l) glass vials connected directly to the glass line can be used For small samples (up to 1 l) glass vials connected directly to the glass line can be used Detection limit: 40 µBq Detection limit: 40 µBq Emanation from “stand-alone” units or systems Tanks, purification columns, filters etc. Tanks, purification columns, filters etc. Extracted 222 Rn is collected in the charcoal traps Extracted 222 Rn is collected in the charcoal traps Detection limit: 50 µBq Detection limit: 50 µBq

Sudbury, Canada Grzegorz ZuzelLRT 2004 Investigations of 222 Rn emanation – emanation chambers

Sudbury, Canada Grzegorz ZuzelLRT 2004 Outline Detection of 222 Rn Detection of 222 Rn Investigations of 222 Rn emanation Investigations of 222 Rn emanation Measurements of 222 Rn diffusion Measurements of 222 Rn diffusion Some results Some results Summary Summary

Sudbury, Canada Grzegorz ZuzelLRT 2004 Measurements of 222 Rn diffusion Thin membranes are required Thin membranes are required Measurements can be performed for samples under different conditions Measurements can be performed for samples under different conditions Simultaneous measurements of diffusion- and solubility coefficients Simultaneous measurements of diffusion- and solubility coefficients Sensitivity for D ~ cm 2 /s Sensitivity for D ~ cm 2 /s

Sudbury, Canada Grzegorz ZuzelLRT 2004 Measurements of 222 Rn diffusion – the apparatus

Sudbury, Canada Grzegorz ZuzelLRT 2004 Diffusion profile

Sudbury, Canada Grzegorz ZuzelLRT 2004 Outline Detection of 222 Rn Detection of 222 Rn Investigations of 222 Rn emanation Investigations of 222 Rn emanation Measurements of 222 Rn diffusion Measurements of 222 Rn diffusion Some results Some results Summary Summary

Sudbury, Canada Grzegorz ZuzelLRT 2004 Selected results – 222 Rn emanation Sample description Emanation rate Stainless steel foil (4.6 ± 0.9) µBq/m 2 Teflon foil < 9 µBq/m 2 Borexino PMT < 40 µBq Activated Carbon - CarboAct (0.3 ± 0.1) mBq/kg Silicon rubber (196 ± 4) mBq/m 2 Polyurethane (< 0.3 – 40) mBq/m 2 Nitrogen stripping column (2.3 ± 0.3) mBq PC storage tank TK4 (~30 m 3 ) (25 ± 3) mBq

Sudbury, Canada Grzegorz ZuzelLRT 2004 Selected results – 222 Rn diffusion RH standard saltRH [%] D [cm 2 /s] S Permeability P [cm 2 /s] Effective permeability P eff [cm 2 /s] Mg(ClO 4 ) 2  0(2.1  0.4)×  0.7(9.5  2.3)× (5.8  1.4)× H 3 PO 4 · ½H 2 O 9  1(2.3  0.3)×  0.3(5.8  1.1)× (3.7  0.7)× LiCl 2 · H 2 O 12  1(2.2  0.3)×  0.3(4.8  0.9)× (3.0  0.6)× CaCl 2 · 6H 2 O 32  2(4.3  0.5)×  0.2(7.7  1.2)× (6.0  1.1)× Na 2 Cr 2 O 7 · 2H 2 O 52  2(1.9  0.3)×  0.2(2.7  0.6)× (2.5  0.6)× Na 2 S 2 O 3 · 5H 2 O 76  2(6.5  0.9)×  0.2(9.8  1.9)× (9.6  1.9)× K 2 CrO 4 88  3(1.3  0.2)×  0.2(2.0  0.4)× (1.9  0.4)× Na 2 SO 4 · 10H 2 O 93  3(3.3  0.4)×  0.1(3.3  0.6)× H 2 O vapors 100  3(1.3  0.2)×  0.1(9.1  2.0)× Rn diffusion, solubility and permeability coefficients as a function of relative humidity for a mm-thick nylon foil (Nylon 6, H[HN(CH 2 ) 5 CO]n OH)

Sudbury, Canada Grzegorz ZuzelLRT 2004 Selected results – 222 Rn diffusion (2)

Sudbury, Canada Grzegorz ZuzelLRT 2004 A combination of 222 Rn diffusion and emanation measurements Applied for investigations of 222 Ra content in a foil used for the construction of the Borexino Inner Vessel Applied for investigations of 222 Ra content in a foil used for the construction of the Borexino Inner Vessel Emanation from ~10 kg (~140 m 2 ) of material performed under „dry“ and „wet“ conditions Emanation from ~10 kg (~140 m 2 ) of material performed under „dry“ and „wet“ conditions Mathematical model of 222 Rn production and emanation allowed to distinguish between the surface and bulk 226 Ra contamination Mathematical model of 222 Rn production and emanation allowed to distinguish between the surface and bulk 226 Ra contamination

Sudbury, Canada Grzegorz ZuzelLRT 2004 Nylon foil in the emanation chamber

Sudbury, Canada Grzegorz ZuzelLRT 2004 Obtained 226 Ra concentrations (Sniamid) Sensitivities: Sensitivities: - surface 226 Ra conc. ~0.5 µBq/m 2 - surface 226 Ra conc. ~0.5 µBq/m 2 - bulk 226 Ra conc. ~10 µBq/kg - bulk 226 Ra conc. ~10 µBq/kg Measured: Measured: - surface 226 Ra conc. < 0.8 µBq/m 2 - surface 226 Ra conc. < 0.8 µBq/m 2 - bulk 226 Ra conc. < 21 µBq/kg - bulk 226 Ra conc. < 21 µBq/kg - total 226 Ra content: (16 ± 4) µBq/kg - total 226 Ra content: (16 ± 4) µBq/kg -> 1.3 ppt 238 U-equivalent -> 1.3 ppt 238 U-equivalent

Sudbury, Canada Grzegorz ZuzelLRT 2004 Outline Detection of 222 Rn Detection of 222 Rn Investigations of 222 Rn emanation Investigations of 222 Rn emanation Measurements of 222 Rn diffusion Measurements of 222 Rn diffusion Some results Some results Summary Summary

Sudbury, Canada Grzegorz ZuzelLRT 2004 Summary Measurements of a few 222 Rn atoms Measurements of a few 222 Rn atoms Emanation studies for sample volume up to 80 l (?00 m 2 ) with the sensitivity at the level of 40 – 150 µBq (< 0.5 µBq/m 2 ) Emanation studies for sample volume up to 80 l (?00 m 2 ) with the sensitivity at the level of 40 – 150 µBq (< 0.5 µBq/m 2 ) Measurements of 222 Rn diffusion coefficient for thin membranes at the sensitivity of ~10 13 cm 2 /s Measurements of 222 Rn diffusion coefficient for thin membranes at the sensitivity of ~10 13 cm 2 /s Several different samples are under investigations for Borexino/GERDA/GeMPI‘s... Several different samples are under investigations for Borexino/GERDA/GeMPI‘s...