DFG SPP1285 Treffen der Projektgruppen, Hannover 6./7. Juni 2008 1 Spin diffusion and transport in (110) GaAs microcavity structures K. Biermann, R. Hey,

Slides:



Advertisements
Similar presentations
Speaker: Xiangshi Yin Instructor: Elbio Dagotto Time: April 15, 2010 (Solid State II project) Quantum Size Effect in the Stability and Properties of Thin.
Advertisements

6.1 Transistor Operation 6.2 The Junction FET
Chapter 9. PN-junction diodes: Applications
PROBING THE BOGOLIUBOV EXCITATION SPECTRUM OF A POLARITON SUPERFLUID BY HETERODYNE FOUR-WAVE-MIXING SPECTROSCOPY Verena Kohnle, Yoan Leger, Maxime Richard,
Optical sources Lecture 5.
1 Cross-plan Si/SiGe superlattice acoustic and thermal properties measurement by picosecond ultrasonics Y. Ezzahri, S. Grauby, S. Dilhaire, J.M. Rampnouz,
Coulomb Interaction in quantum structures - Effects of
School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK. Electrically pumped terahertz SASER device using a weakly coupled AlAs/GaAs.
True single photon sources V+ Particle like Wave-like during propagation Particle like Single atom or ion (in a trap) Single dye molecule.
The Persistent Spin Helix Shou-Cheng Zhang, Stanford University Banff, Aug 2006.
Indistinguishability of emitted photons from a semiconductor quantum dot in a micropillar cavity S. Varoutsis LPN Marcoussis S. Laurent, E. Viasnoff, P.
IBPOWER Kick off meeting – 07/02/08 Specific issues relating to plasma-MBE Growth under group III-rich versus group V-rich conditions Control of composition.
Magneto-optical study of InP/InGaAs/InP quantum well B. Karmakar, A.P. Shah, M.R. Gokhale and B.M. Arora Tata Institute of Fundamental Research Mumbai,
Department of Aeronautics and Astronautics NCKU Nano and MEMS Technology LAB. 1 Chapter I Introduction June 20, 2015June 20, 2015June 20, 2015.
The Persistent Spin Helix Shou-Cheng Zhang, Stanford University Les Houches, June 2006.
Optical study of Spintronics in III-V semiconductors
Diode laser The diode or semiconductor laser Diode lasers are extremely compact (0.3×0.2×0.1 mm), high efficiency (up to 40%), tuneable lasers, which have.
1 Motivation: Embracing Quantum Mechanics Feature Size Transistor Density Chip Size Transistors/Chip Clock Frequency Power Dissipation Fab Cost WW IC Revenue.
9. Semiconductors Optics Absorption and gain in semiconductors Principle of semiconductor lasers (diode lasers) Low dimensional materials: Quantum wells,
J.S. Colton, ODMR studies of n-GaAs Optically-detected magnetic resonance studies of n-GaAs Talk for APS March Meeting, Mar 20, 2009 John S. Colton, Brigham.
I. ELECTRICAL CONDUCTION
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Thermal stability of the ferromagnetic in-plane.
MIPD Small-scale energy harvesting device LIUJIN.
ISAT 303-Lab3-1  Measurement of Condition: Lab #3 (2005):  List of parameters of condition: –Linear distance, angular displacement, vibration, displacement,
STRUCTURE AND MAGNETIC PROPERTIES OF ULTRA-THIN MAGNETIC LAYERS
Theory of Intersubband Antipolaritons Mauro F
(In,Ga)As/(Al,Ga)As quantum wells on GaAs(110) R. Hey, M. Höricke, A. Trampert, U. Jahn, P. Santos Paul-Drude-Institut für Festkörperelektronik, Berlin.
Carrier Mobility and Velocity
TAPPINGMODE™ IMAGING APPLICATIONS AND TECHNOLOGY
Introduction to spin-polarized ballistic hot electron injection and detection in silicon by Ian Appelbaum Philosophical Transactions A Volume 369(1951):
Brad Gussin John Romankiewicz 12/1/04 Quantum Dots: Photon Interaction Applications.
Interplay of polarization fields and Auger recombination in the efficiency droop of nitride light-emitting diodes APPLIED PHYSICS LETTERS 101, (2012)
Observation of the spin-Hall Effect Soichiro Sasaki Suzuki-Kusakabe Lab. Graduate School of Engineering Science Osaka University M1 Colloquium.
Fermi-Edge Singularitäten im resonanten Transport durch II-VI Quantenpunkte Universität Würzburg Am Hubland, D Michael Rüth, Anatoliy Slobodskyy,
Observation of ultrafast response by optical Kerr effect in high-quality CuCl thin films Asida Lab. Takayuki Umakoshi.
Itoh Lab. M1 Masataka YASUDA
Observation of ultrafast nonlinear response due to coherent coupling between light and confined excitons in a ZnO crystalline film Ashida Lab. Subaru Saeki.
Resonant medium: Up to four (Zn,Cd)Se quantum wells. Luminescence selection is possible with a variation of the Cd-content or the well width. The front.
111 Notes 22 April 2013 Semiconductor Quantum Wells (QWs) A narrow gap semiconductor is sandwiched between layers of a wide band gap semiconductor Quantum.
Polarized Photocathode Research Collaboration PPRC R
Detection of current induced Spin polarization with a co-planar spin LED J. Wunderlich (1), B. Kästner (1,2), J. Sinova (3), T. Jungwirth (4,5) (1)Hitachi.
1 Stephen SchultzFiber Optics Fall 2005 Semiconductor Optical Detectors.
Photovoltaics Continued: Chapter March 2014
Master Colloquium Field-effect Control of Insulator-metal Transition Property in Strongly Correlated (La,Pr,Ca)MnO 3 Film Ion Liquid (IL) LPCMO channel.
The Structure and Dynamics of Solids
G. Kioseoglou SEMICONDUCTOR SPINTRONICS George Kioseoglou Materials Science and Technology, University of Crete Spin as new degree of freedom in quantum.
Slide # 1 PL spectra of Quantum Wells The e1-h1 transition is most probable and observed with highest intensity At higher temperature higher levels can.
Preliminary doping dependence studies indicate that the ISHE signal does pass through a resonance as a function of doping. The curves below are plotted.
林永昌 2011.Dec.04. Experiment Hall-bar geometry was fabricated using oxygen plasma. Electrodes were made of Ti/Pd/Au. Gate length 2 to 4 μm, Hall-bar width.
Experiments to probe the inverse Spin-Hall Effect in GaAs U. Pfeuffer, R. Neumann, D. Schuh, W. Wegscheider, D. Weiss 7. June 2008 University of Regensburg.
Conclusion QDs embedded in micropillars are fabricated by MOCVD and FIB post milling processes with the final quality factor about Coupling of single.
Application of photodiodes
PN-junction diodes: Applications
Nanowire Thermoelectrics for Energy Conversion
MBE Growth of Graded Structures for Polarized Electron Emitters
OUTLINE 1. Electrical simulation of VCSELs : standard structures
Spin-orbit interaction in a dual gated InAs/GaSb quantum well
OPTICAL SOURCE : Light Emitting Diodes (LEDs)
An Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity Matthew Pelton Glenn Solomon, Charles Santori, Bingyang Zhang, Jelena.
Period Dependence of Time Response of Strained Semiconductor Superlattices XIVth International Workshop on Polarized Sources, Targets & Polarimetry Leonid.
FAM Mirko Rehmann March
Quantum Dot Lasers ASWIN S ECE S3 Roll no 23.
Review of semiconductor physics
FIELD EFFECT TRANSISTOR
The effect of spin-orbital coupling and buffer layer to magnetic effect on Organic Light-Emitting Device Z. Y. Sun, B. F. Ding, X. M. Ding, X. Y. Hou Sample.
Strong Coupling of a Spin Ensemble to a Superconducting Resonator
Photovoltaics Continued: Chapter 14 4 and 6 March 2015
Magnetic control of light-matter coupling for a single quantum dot embedded in a microcavity Qijun Ren1, Jian Lu1, H. H. Tan2, Shan Wu3, Liaoxin Sun1,
Enhanced Lateral Drift (ELAD) sensors
Strained Silicon Aaron Prager EE 666 April 21, 2005.
Presentation transcript:

DFG SPP1285 Treffen der Projektgruppen, Hannover 6./7. Juni Spin diffusion and transport in (110) GaAs microcavity structures K. Biermann, R. Hey, and P. Santos Paul-Drude-Institut für Festkörperelektronik Berlin

DFG SPP1285 Treffen der Projektgruppen, Hannover 6./7. Juni outline motivation, basic concepts MBE growth surface acoustic waves (SAWs) in microcavity structures spin diffusion and spin transport measurements - external applied magnetic field - Hanle effect measurement -intense SAW fields summary / outlook „Spin diffusion and transport in (110) GaAs microcavity structures“

DFG SPP1285 Treffen der Projektgruppen, Hannover 6./7. Juni motivation Aim: transport and manipulation of spins up to LN 2 temperature ( ) / RT ( ) Basic concept: Requirements: a) long spin-lifetimes b) effective conversion of circularly polarized light into spin-polarized carriers & vice versa IDT S rf N undoped QW SAW electron photons V gate M light inlight out

DFG SPP1285 Treffen der Projektgruppen, Hannover 6./7. Juni requirement a: long spin-lifetimes 1)Transport by SAW: -> enhanced carrier lifetime -> enhanced spin lifetime (reduced exchange interaction of electrons and holes -> suppression of the Bir-Aronov-Pikus spin dephasing mechanism ) hLhL 2)Transport of spin-polarized carriers in (110) QWs: dominant spin-lifetime limitting process (Dyakonov-Perel mechanism) in semiconductors without inversion symmetry:  spin induced splitting of the conduction band  effective magnetic field B int (k e ) of spin-orbit-interaction (001) QW: (110) QW:

DFG SPP1285 Treffen der Projektgruppen, Hannover 6./7. Juni > insertion of the QW into a micro-resonator (cavity) structure requirement b: effective light-carriers conversion ________________ ___upper DBR____ cavity with QW _ ___lower DBR____ ____substrate____ C -> precise control of layer thicknesses mandatory!

DFG SPP1285 Treffen der Projektgruppen, Hannover 6./7. Juni MBE growth: challenges MBE challenges: a) Growth of high structural perfection on (110) oriented GaAs substrates spin-dephasing transport of carriers (eg. recombination at local potential minima) b) Growth of exactly tuned cavity structures at working temperature: QW-emission wavelength QW cavity resonance wavelength C

DFG SPP1285 Treffen der Projektgruppen, Hannover 6./7. Juni MBE growth of high-quality (110) cavity structures Compared to (001) GaAs based structures: stronger tendency to facetting reduced critical thickness Growth parameter for (110) GaAs based structures: low Tg (~ 490 °C) high V/III BEP ratio (~ 45) MEE grown smoothing buffer layer growth interruptions in-situ annealing steps whole cavity structure is composed of short-period-super-lattices (SPSLs) 10K-PL of a GaAs-QW in a cavity (out of resonance) d QW ~20 nm:

DFG SPP1285 Treffen der Projektgruppen, Hannover 6./7. Juni in-situ reflection measurement Deviation of the cavity resonance wavelength from the nominal value ( c ) is smaller than the MBE inherent lateral thickness variation (due to flux inhomogeneities) Real-time growth rate corrections MBE growth of exactly tuned cavities

DFG SPP1285 Treffen der Projektgruppen, Hannover 6./7. Juni SAWs in modified cavity structures `Al-reduced´cavity structure: reduction of Al-content in every layer ¾- Ga-rich layers 2- (instead of 1-) Ga-rich cavity -> propagation of SAWs is supported Additional deposition of a 1- thick ZnO cap layer (sputtering) to increase the piezoelectric potential of the SAWs. 1- ZnO QW

DFG SPP1285 Treffen der Projektgruppen, Hannover 6./7. Juni spin diffusion and spin transport measurements generation point G spin diffusion IDT switched off spin transport generation point G IDT switched on SAWs B measurements with in-plane magnetic field B B y || [001] v = 3 µm/ns IlIrIlIr T = 80 K

DFG SPP1285 Treffen der Projektgruppen, Hannover 6./7. Juni T = 80 K P SAW = dBm P=790nm = 150 µW (100µm pinhole, 20x objective) spin transport B = 0 spins || z no in-plane spin component  z ~ 8 ns Lamor frequency g e = -0.36,  = 1.27/ns Spin polarisation d 1/e = 25.2 µm B > 0 -> spin precession -> in-plane component s y  y << 8 ns

DFG SPP1285 Treffen der Projektgruppen, Hannover 6./7. Juni Hanle effect measurement Measurement of spin diffusion along [001] in dependence of B [1-10] B ext y [001] x [1-10] s Precession leads to an in-plane spin component. ->  = f(B) if  y <>  z -> allows for an estimation of  y T = 80 K, P=790nm = 25 µW in-plane: s,y 0.7 ns out-of-plane:  s,z 8.4 ns 8.6 dBm) T 2 * = 1.3 ns (g = -0.36) T = 80K

DFG SPP1285 Treffen der Projektgruppen, Hannover 6./7. Juni influence of strain fields T = 80 K P SAW = 15, 23 dBm P=790nm = 58 µW (100µm pinhole, 20x objective) SAW strain field -> internal magnetic field along (1-10) -> strong influence on spin polarization transport by intense SAW fields:

DFG SPP1285 Treffen der Projektgruppen, Hannover 6./7. Juni summary /outlook processing of narrow lateral channels (along [001]) to increase in-plane spin lifetime (deep etching / metal stripes on top of samples) implementation of electric / magnetic gates replace GaAs QW by InGaAs QW (higher confinement) outlook growth and processing of high quality (110) GaAs cavity structures, that support SAW propagation spin diffusion and tranport measurements at T=80K -effect of an external magnetic field and of SAWs on spin polarisation - estimation of the in-plane (1 ns) and out-of-plane spin-lifetimes (8 ns). summary