SSL Lab. SSL Lab. Solid State Lighting Lab. Southern Taiwan University 1 Adviser : Hon Kuan Adviser : Hon Kuan Wen-Cheng Tzou Wen-Cheng Tzou Reporter :

Slides:



Advertisements
Similar presentations
 To overcome these issues, a “dual-stage MQW” structure was proposed to enhance the electron injection and improve the crystalline quality of the overlying.
Advertisements

Latest development of InGaN and Short-Wavelength LD/LED/VCSEL 屠嫚琳 Man-lin Tu.
Hot Electron Energy Relaxation In AlGaN/GaN Heterostructures 1 School Of Physics And Astronomy, University of Nottingham, University Park, Nottingham,
Recent Progress in Non-Cesiated III-Nitride Photocathodes Douglas Bell, Shouleh Nikzad Jet Propulsion Laboratory Amir Dabiran SVT Associates, Inc. Shadi.
Simulation of InGaN violet and ultraviolet multiple-quantum-well laser diodes Sheng-Horng Yen, Bo-Jean Chen, and Yen-Kuang Kuo* *Department of Physics,
Optical properties and carrier dynamics of self-assembled GaN/AlGaN quantum dots Ashida lab. Nawaki Yohei Nanotechnology 17 (2006)
1 Simulation of Light-Emitting Diodes and Solar Cells Yen-Kuang Kuo, Jih-Yuan Chang, Miao-Chan Tsai, Tsun-Hsin Wang, Yi-An Chang, Fang-Ming Chen, and Shan-Rong.
APPLIED PHYSICS LETTERS 96, , 2010
Kansas State University III-Nitride Deep Ultraviolet Photonic Materials and Structures Jingyu Lin & Hongxing Jiang DMR Growth of III-nitride Photonic.
Page 1 Band Edge Electroluminescence from N + -Implanted Bulk ZnO Hung-Ta Wang 1, Fan Ren 1, Byoung S. Kang 1, Jau-Jiun Chen 1, Travis Anderson 1, Soohwan.
Optical Characterization of GaN-based Nanowires : From Nanometric Scale to Light Emitting Devices A-L. Bavencove*, E. Pougeoise, J. Garcia, P. Gilet, F.
Improvement in light-output efficiency of Near-Ultraviolet InGaN–GaN LEDs Fabricated on Stripe Patterned Sapphire Substrate 指導教授 : 管鴻 教授 報告學生 : 林耀祥 日 期:
1 Numerical study on efficiency droop of blue InGaN light-emitting diodes Yen-Kuang Kuo*, Jih-Yuan Chang, and Jen-De Chen Department of Physics, National.
EBL Structure 1. N-EBL Barrier Well Al0.17Ga0.83 Al0.25Ga0.75 Al0.17Ga0.83 Structure 1 2.
Efficiency and Electron Leakage Characteristics in GaN-Based Light-Emitting Diodes Without AlGaN Electron-Blocking-Layer Structures Han-Youl Ryu, Jong-In.
The Analysis of Light Absorption and Extraction of InGaN LEDs Jeng-Feng Lin, Chin-Chieh Kang, Pei-Chiang Kao Department of Electro-Optical Engineering,
Influence of Si-Doping on the Characteristics of InGaN–GaN Multiple Quantum-Well Blue Light Emitting Diodes Sum DJ L. W. Wu, S. J. Chang, T. C. Wen, Y.
日 期: 指導老師:林克默、黃文勇 學 生:陳 立 偉 1. Outline 1.Introduction 2.Experimental 3.Result and Discussion 4.Conclusion 2.
Tyler Park Jeffrey Farrer John Colton Haeyeon Yang APS March Meeting 2012, Boston.
1 Al 2 O 3 sapphire 50nm GaN buffer layer at 550 。 C 3μm Si-doped n + -GaN at 1050 。 C MQW at 770 。 C 50nm Mg-doped p-Al 0.15 Ga 0.85 N EBL at 1050 。 C.
班 級:碩研電子二甲 姓 名:江宥辰 學 號: M 授課教師:蔣富成.  1. Crystalline Quality  2. Current Spreading Effect  3. Discussion  4. Reference.
Slide # 1 Variation of PL with temperature and doping With increase in temperature: –Lattice spacing increases so bandgap reduces, peak shift to higher.
Advisor: Prof. Yen-Kuang Kuo
Use the same contacts for GaN based UV Photodetectors Y.C. Chiang.
報告人 : 洪國慶. Outline INTRODUCTION EXPERIMENTAL DETAILS RESULTS AND DISCUSSION CONCLUSION REFERENCES 2.
FIG. 4. Electroluminescence spectra of (a) Sample A (with shallow TQW), (b) Sample B (with shallow RQW), (c) Sample C (w/o. shallow QWs) at Various injection.
Use different substrate for InGaN-GaN LED 陳詠升. Outline Introduction Experiment Results and Discussion Conclusion References.
Results and discussion. Conclusion In conclusion, thinning the sapphire substrate enables the control of the residual compressive stress developed in.
Growth of low defect density III-N on Nanowires S. M. Bedair, North Carolina State University, DMR Gallium Nitride (GaN) is a pivotal material.
Y.Y. Outline Introduction Experiment Results and discussion Conclusion References.
Seminar Paper review 報告者: C.C.Hong.
Single photon counting detector for THz radioastronomy. D.Morozov 1,2, M.Tarkhov 1, P.Mauskopf 2, N.Kaurova 1, O.Minaeva 1, V.Seleznev 1, B.Voronov 1 and.
Dept. of Electrical and Electronic Engineering The University of Hong Kong Page 1 IMWS-AMP 2015 Manipulating Electromagnetic Local Density of States by.
1 Enhanced efficiency of GaN-based light-emitting diodes with periodic textured Ga-doped ZnO transparent contact layer 指導教授 : 管 鴻 (Hon Kuan) 老師 學生 : 李宗育.
1 AlCl 3 -induced crystallization of amorphous silicon thin films 指導教授 : 管 鴻 (Hon Kuan) 老師 學生 : 李宗育 (Tsung-Yu Li)
光電科技 LED: Materials and Device Aspects 授課教師 : 龔 志 榮 教授 國立中興大學物理學系 中華民國一○二年四月二十二日 1.
Figure 3. Color online Current–voltage curves at a forward bias b reverse bias voltage in the nonetched and etched GaN LEDs. 3× × × ×10.
Growth and optical properties of II-VI self-assembled quantum dots
Current spreading and thermal effects in blue LED dice Jen Kai Lee.
Relationship between thermal and luminance distributions in high-power lateral GaN/InGaN light-emitting diodes D.P. Han, J.I. Shim and D.S. Shin ELECTRONICS.
Seminar Paper review 報告者 : B. J. Hu. Ultraviolet light-emitting diodes at 340 nm using quaternary AlInGaN multiple quantum wells V. Adivarahan, A. Chitnis,
Fig. 3. Temperature dependence of normalized integrated PL intensity for InGaN MQW on GaN substrates grown at Tg of 740, 780 and 800 ℃.
1 Fig. 3. HRXRD omega/2theta scans of single-, dual-, and step-stage MQW structures.
Y.W. Lin. Outline Introduction Experiments Results and Discussion Conclusion References.
Slide # 1 PL spectra of Quantum Wells The e1-h1 transition is most probable and observed with highest intensity At higher temperature higher levels can.
P.K. Lin 1.
3. OLED panel Organic light emitting diodes (OLEDs) with a quasi-crystal (QC) structure are analyzed and applied in a head-mounted display (HMD) system.
Temperature dependence of performance of InGaN/GaN MQW LEDs
EXPERIMENTAL Sapphire 25nm Buffer layer 5μm Undoped GaN Si doped n-GaN MQW 3 nm undoped InGaN well 12nm Si doped GaN barrier Mg doped p-AlGaN EBL 150nm.
Effect of N-Type AlGaN Layer on Carrier Transportation and Efficiency Droop of Blue InGaN Light-Emitting Diodes 1 Sheng-Horng Yen, Miao-Chan Tsai, Meng-Lun.
Current spreading of III-nitride light-emitting diodes using plasma treatment Hsin-Ying Lee Ke-Hao Pan Chih-Chien Lin Yun-Chorng Chang Fu-Jen Kao Ching-Ting.
專題研討 ( 二 ) Electron-Blocking-Layer, n-EBL Hole-Blocking-Layer, HBL 碩研電子一甲 MA 楊書瑋.
Ru-Chin Tu, Chun-Ju Tun, Shyi-Ming Pan, Chang-Cheng Chuo, J. K. Sheu, Ching-En Tsai, Te-Chung Wang,and Gou-Chung Chi IEEE PHOTONICS TECHNOLOGY LETTERS,
Improved Carrier Distributions by Varying Barrier Thickness for InGaN/GaN LEDs S. F. Yu, Ray-Ming Lin, S. J. Chang, Senior Member, IEEE, J. R. Chen, J.
SSL Lab. SSL Lab. Solid State Lighting Lab. Southern Taiwan University 1 Adviser : Hon Kuan Reporter: Wei-Shun Huang Southern Taiwan University Efficient.
National Cheng Kung University Institute of microelectronics OEIC Lab. Jun P. 1 ZnO-based thin film double heterostructured- ultraviolet light-emitting.
Dong-Yul Lee, Sang-Heon Han,a) Dong-Ju Lee, Jeong Wook Lee, Dong-Joon Kim, Young Sun Kim, and Sung-Tae Kim Samsung LED Co. Ltd., Suwon , South Korea.
Experimental Details 1 Fig. 1. Schematic diagram of the investigated LED layer structure. In the present work, the Mg doping width of the LT p-GaN interlayer.
1 學生:黃順源 老師:管 鴻 教授 Light Extraction Efficiency Enhancement of GaN Blue LED by Liquid-Phase-Deposited ZnO Rods copy.
GaN-Based MSM Photodetectors Prepared on Patterned Sapphire Substrates Shoou-Jinn Chang, Member, IEEE, Y. D. Jhou, Y. C. Lin, S. L. Wu, C. H. Chen, T.
Fabrication and characterization of solution processed vertical organic light-emitting device Mohd Arif Mohd Sarjidan 1, a *, Ahmad Shuhaimi 2,b and Wan.
Small internal electric fields in quaternary InAlGaN heterostructures S.P. Łepkowski 1, P. Lefebvre 2, S. Anceau 1,2, T. Suski 1, H. Teisseyre 1, H. Hirayama.
Date of download: 7/6/2016 Copyright © 2016 SPIE. All rights reserved. X-ray diffraction (XRD) 2θ-ω scans around (00·2) reflection for InxGa1−xN layers.
Study of the strain relaxation in InGaN/GaN
Y.Y CHEN.
Meeting 指導教授:李明倫 學生:劉書巖.
Strong infrared electroluminescence from black silicon
Investigation of Efficiency Droop Behaviors of
by Shuji Nakamura Science Volume 281(5379): August 14, 1998
سمینار درس الکترونیک نوری
Presentation transcript:

SSL Lab. SSL Lab. Solid State Lighting Lab. Southern Taiwan University 1 Adviser : Hon Kuan Adviser : Hon Kuan Wen-Cheng Tzou Wen-Cheng Tzou Reporter : Bo-Jun Liu Southern Taiwan University Effect of an electron blocking layer on the piezoelectric field in InGaN/GaN multiple quantum well light-emitting diodes

SSL Lab. SSL Lab. Solid State Lighting Lab. Southern Taiwan University 2 Outline Introduction Experiments Result and Discussion Conclusion References

SSL Lab. SSL Lab. Solid State Lighting Lab. Southern Taiwan University 3 Introduction The effect of an electron blocking layer (EBL) on the piezoelectric field in InGaN/GaN multiple quantum well (MQW). Electric-field-dependent ER measurements showed an enhanced piezoelectric field in LEDs with a p-AlGaN EBL compared with LEDs without EBL.

SSL Lab. SSL Lab. Solid State Lighting Lab. Southern Taiwan University Experiments InGaN/GaN MQW LEDs were grown on a (0001) patterned sapphire substrate using metal organic chemical vapor deposition. The structures of the LEDs consisted of 2.0 lm thick undoped GaN, 3.0-lm thick Si-doped n-GaN, and 5 pairs of InGaN/GaN (3.0 nm/12 nm) MQW. For LED A, a 150 nm-thick Mg-doped p-GaN contact layer was grown directly on the MQW without a p-AlGaN EBL. For LED B, a 40 nm thick Mg-doped p-Al0.22Ga0.78N EBL was grown on the MQW, followed by a 110 nm thick Mg-doped p-GaN contact layer. 4

SSL Lab. SSL Lab. Solid State Lighting Lab. Southern Taiwan University 5 Result and Discussion FIG. 1. (Color online) EL spectra with increasing current for (a) LED A without an EBL and (b) LED B with a p-AlGaN EBL.

SSL Lab. SSL Lab. Solid State Lighting Lab. Southern Taiwan University 6 Result and Discussion (c) the variations of FWHM, and (d) EL peak energies as a function of current.

SSL Lab. SSL Lab. Solid State Lighting Lab. Southern Taiwan University 7 Result and Discussion FIG. 2. (Color online) (a) Reverse-bias dependent ER spectra and (b) peak energies and intensities of ER spectra with reverse-bias voltages for LED A without an EBL and LED B with a p-AlGaN EBL.

SSL Lab. SSL Lab. Solid State Lighting Lab. Southern Taiwan University 8 Result and Discussion FIG. 3. (Color online) Time-resolved PL spectra at selected time for (a) LED A without an EBL and (b) LED B with a p-AlGaN EBL.

SSL Lab. SSL Lab. Solid State Lighting Lab. Southern Taiwan University 9 Conclusion investigated the effect of a p-AlGaN EBL on the piezoelectric field in InGaN/GaN MQW LEDs. In contrast with the LEDs without a p-AlGaN EBL, the LEDs with a p-AlGaN EBL exhibited reduced blueshift and a sublinear increase of full width at half maximum in their EL spectra at low current densities. Furthermore, based on the QCSE model, the residual strain is estimated and it is used for our x-ray kinetic simulation. Our simulation considering the strain relaxation agrees well with the measured XRD patterns.

SSL Lab. SSL Lab. Solid State Lighting Lab. Southern Taiwan University 10 References Nakamura, Science 281, 956 (1998). E. F. Schubert and J. K. Kim, Science 308, 1274 (2005). T. Mukai, M. Yamada, and S. Nakamura, Jpn. J. Appl. Phys., 38(Part 1), 3976 (1999). E. F. Schubert, Light-Emitting Diodes (Cambridge University Press, Cambridge,2003). 5S.-H. Han, D.-Y. Lee, S.-J. Lee, C.-Y. Cho, M.-K. Kwon, S. P. Lee, D. Y.Noh, D.-J. Kim, Y. C. Kim, and S.-J. Park, Appl. Phys. Lett. 94, (2009). M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, Appl. Phys. Lett. 91, (2007). Y.-K. Kuo, M.-C. Tsai, and S.-H. Yen, Opt. Commun. 282, 4252 (2009). S.-H. Park and S.-L. Chuang, Appl. Phys. Lett. 72, 3103 (1998). T. M. Hsu, C. Y. Lai, W.-H. Chang, C.-C. Pan, C.-C. Chuo, and J.-I. Chyi, Appl. Phys. Lett. 84, 1114 (2004). F. H. Pollak, “Modulation Spectroscopy of Semiconductors and Semiconductor Microstructures,” in Handbook on Semiconductors, edited by T. S. Moss (Elsevier, Amsterdam, 1994), Vol. 2, pp. 527–635. G. Franssen, P. Perlin, and T. Suski, Phys. Rev. B 69, (2004). H. S. Kim, J. Y. Lin, H. X. Jiang, W. W. Chow, A. Botchkarev, and H. Morkoc, Appl. Phys. Lett. 73, 3426 (1998).

SSL Lab. SSL Lab. Solid State Lighting Lab. Southern Taiwan University 11 T hanks for your attention !