Glycogen Metabolism.

Slides:



Advertisements
Similar presentations
TRANSPORT OF MONOSACCARIEDS DR SAMEER FATANI. TRANSPORT OF MONOSACCHARIDES Digestion of di- and polysaccharides results in the following MONOSACCHARIDES:
Advertisements

Glycogen Metabolism Copyright © by Joyce J. Diwan. All rights reserved. Molecular Biochemistry I.
GLUCAGON AND ADRENALINE ACTION - REGULATION OF METABOLISM
Chapter 21: Glycogen Metabolism Copyright © 2007 by W. H. Freeman and Company Berg Tymoczko Stryer Biochemistry Sixth Edition.
Glycogen Metabolism Copyright © by Joyce J. Diwan. All rights reserved. Biochemistry of Metabolism.
Glycogen metabolism. The metabolism of glycogen in animals Glycogenesis: formation of glycogen (de novo or enlarge) Glycogenolysis: mobolizing glycogen.
Additional Pathways in Carbohydrate Metabolism
Prentice Hall c2002Chapter 131 Chapter 13 Additional Pathways in Carbohydrate Metabolism Insulin, a 51 amino acid polypeptide that regulates carbohydrate.
Carbohydrate Metabolism 2: Glycogen degradation, glycogen synthesis, reciprocal regulation of glycogen metabolism Bioc 460 Spring Lecture 34 (Miesfeld)
Glycogen metabolism.
DENTAL BIOCHEMISTRY 2015 Lecture 11 PENTOSE PHOSPHATE PATHWAY AND GLYCOGEN METABOLISM Michael Lea.
Carbohydrate Metabolism 2: Glycogen degradation, glycogen synthesis, reciprocal regulation of glycogen metabolism Bioc 460 Spring Lecture 34 (Miesfeld)
Dr. Samah Kotb Nasr Eldeen. GLYCOGEN CATABOLISM CHAPTER 4.
Lecture 2: Glycogen metabolism (Chapter 15)
Glycogen Metabolism Reducing end.
Glycogen Metabolism Dr. Tarek A Salem Biochemistry Qassim University College of Medicine.
Biochemistry department
Starvation Lecture 19.
Professor of Biochemistry Glycogen metabolism
PRINCIPLES OF METABOLIC REGULATION: GLUCOSE AND GLYCOGEN
Glycogen. Human liver - 50 g/kg wet wt. Skeletal muscle - 15 g/kg wet wt. Glycogenin = protein core Glycosome ~ ~
· It is the storage from of glucose in animals
Glycogen metabolism. Glycogen is homopolysaccharide formed of branched α-D- GLUCOSE units (α1,4and α1,6) each branch is made of 6-12 glucose units, at.
Type 0 Type I Glycogen Storage Diseases Type IV Type VII Type III.
Glycogen Metabolism. Glycogen is a polymer of glucose residues linked by   (1  4) glycosidic bonds, mainly   (1  6) glycosidic bonds, at branch.
Carbohydrate Digestion Forms of Carbohydrate Simple sugars Starch Glycogen Fiber.
Chapter 18 Storage Mechanisms and Control in Carbohydrate Metabolism Mary K. Campbell Shawn O. Farrell Paul.
Structure of glycogen * Glycogen: branched-chain homopolysaccharide made of α-D- glucose linked by α-1,4 linkage. After every 8-10 glucose residues there.
Glycogen Metabolism By Dr. Reem M. Sallam, MD, MSc, PhD Clinical Chemistry Unit Department of Pathology College of Medicine, King Saud University.
Glycogen Metabolism.
Regulation via Insulin Regulation via Glucagon/ Epi.
BIOC/DENT/PHCY 230 LECTURE 9. Carbohydrate metabolism in the fasted state o the body needs to ensure there is a constant supply of glucose for tissues.
Glycogen Metabolism. What is the importance of glycogen? needed to maintain blood glucose levels Where is glycogen stored? liver muscle.
METABOLISM OF CARBOHYDRATES: DIGESTION OF CARBOHYDRATES. SYNTHESIS AND DEGRADATION OF GLYCOGEN.
CHAPTER 24 Glycogen Degradation. Most glycogen is found in muscle and liver cells Glycogen particles in a liver cell section.
GLYCOGEN METABOLISM 1. Glycogen Structure Most of the glucose residues in glycogen are linked by  -1,4-glycosidic bonds. Branches at about every tenth.
INTER 111: Graduate Biochemistry. Gluconeogenesis is also major component of normal metabolism - in sleep, 35-70% blood glucose supplied by gluconeogenesis.
Metabolism of Carbohydrates
Glycogen Metabolism Dr. Reem M. Sallam, MD, MSc, PhD By
GLYCOGEN METABOLISM Learning objectives: Describe composition and glycosidic bonds in glycogen Describe the biochemical pathway of glycogen synthesis Describe.
Storage Mechanisms and Control in Carbohydrate Metabolism Apr. 7, 2016 CHEM 281.
LEHNINGER PRINCIPLES OF BIOCHEMISTRY Fifth Edition David L. Nelson and Michael M. Cox © 2008 W. H. Freeman and Company CHAPTER 15 Principles of Metabolic.
METABOLISM OF CARBOHYDRATES: SYNTHESIS AND DEGRADATION OF GLYCOGEN
CHAPTER 2 METABOILISM OF CARBOHYDRATE. 1. Coversion into Glycogen and degradation i) Glycogenesis in which the excess glucose is converted into glycogen.
METABOLIC PATHWAYS Glycogen synthesis and breakdown
Regulation of Glycogen Metabolism
Glycogenolysis.
Biochemistry Seventh Edition CHAPTER 21 Glygogen Metabolism Copyright © 2012 by W. H. Freeman and Company Berg Tymoczko Stryer.
Glycogen Mobilization: Glycogenolysis
Studing of biosynthesis and catabolism of glycogen. Regulation of glycogen metabolism.
GLYCOGEN METABOLISM DR. A. TARAB DEPT. OF BIOCHEMISTRY HKMU.
Glycogen Metabolism Dr. Samah Kotb 2015 Cellular Biochemistry and Metabolism2 (CLS 333)
Glycogen Metabolism Introduction. Storage Polysaccharides.
22.6 Glycogen Synthesis and Degradation
The Endocrine Pancreas
Glycogen Metabolism Glycogenolysis: catabolism of glycogen.
Glycogen Metabolism By Dr. Amr S. Moustafa, MD, PhD.
Glycogen metabolism.
Carbohydrate Metabolism Glycogen Metabolism
GLYCOGEN METABOLISM.
Glycogen metabolism.
How Cells Obtain Energy from Food
Glycogen Metabolism Clinical Chemistry Unit Department of Pathology
Additional Pathways in Carbohydrate Metabolism
Glycogen Metabolism Reducing end.
GLYCOGEN METABOLISM.
Glycogen Metabolism Clinical Chemistry Unit Department of Pathology
Glycogen Metabolism Nilansu Das Dept. of Molecular Biology Surendranath College.
The Endocrine Pancreas
Presentation transcript:

Glycogen Metabolism

Variation of liver glycogen levels between meals and during the nocturnal fast.

In muscle the final products of glycogen breakdown depend on the type of muscle fiber. Red muscle fibers many mitochondria and much myoglobin. Glucose is converted primarily to pyruvate that can be completely oxidized to CO2 and water. White muscle fibers few mitochondria and little myoglobin break down glucose primarily to lactate can do this very rapidly.

chicken breast - white muscle fibers capable of high energy output for short periods chicken heart - red muscle fibers capable of sustained activity but stores glycogen for periods of increased demand Duck breast Turkey breast Most skeletal muscles of humans are a mixture of red and white fibers.

Structure of Glycogen one branch point about every ten sugars glycogen granules present in cytosol granules about 10-40 nm in diameter ~100,000 glucose units in a granule

Glycogen Biosynthesis takes place in the cytosol utilizes an activated form of glucose - UDP-glucose UDP-glucose is made from Glucose-1-phosphate and UTP The phosphoglucomutase reaction.

UDP-Glucose Pyrophosphorylase

Glycogen Synthesis is Initiated on Glycogenin the first step in glycogen synthesis is the transfer of a glucose unit from UDP-glucose to a tyrosine in glycogenin. glycogenin autocatalytically extends the glucan chain ~7 Glc units, then glycogen synthase takes over, along with glycogen branching enzyme.

Enzymes of Glycogen Metabolism Form a Complex with the Glycogen Particle GN - glycogenin GS - glycogen synthase GP - glycogen phosphorylase PhK - phosphorylase kinase RG1 - phosphatase reg. subunit CS1 - phosphatase catal. subunit

Glycogen Branching Enzyme - transfers a ~7 glucose segment

Glycogen breakdown Dietary: Involves a amylase Creates limit dextrins and maltose Debranching Hydrolysis produces 2 glucose from one maltose Metabolic-intracellular Involves glycogen phosphorylase Produces Glucose-1-phosphate Phosphoglucomutase converts Gluc-1-phosphate to Gluc-6-phosphate

Dietary breakdown of Starch Figure 22.11 (a) The sites of hydrolysis of starch by α- and β-amylases are indicated. a-amylase (saliva and pancreas) b-amylase (in plants) a-amylase can cleave to maltose and maltotriose (2 glucose and 3 glucose moieties) but stops within 4 glucoses of a branch, so leave “limit dextrins” that need debranching.

Dietary carbohydrate breakdown Figure 22.12 The reactions of debranching enzyme. Transfer of a group of three glucose residues from a limit branch to another branch is followed by cleavage of the bond linking the remaining residue at the branch.

Glycogenolysis Intracellular - glycogen breakdown is not simply a reversal of biosynthesis - different reactions are involved. Glycogen phosphorylase cleaves glucose residues off the non-reducing ends of the chains by addition of inorganic phosphate (phosphorolysis). - the enzyme only removes glucose units that are 4 or more residues from a branch point.

Glycogen Debranching Enzyme The enzyme has 2 different activities: oligo-(-1,4-1,4)-glucantransferase 2. amylo--(1,6)-glucosidase

Glycogen phosphorylase and debranching enzyme give a mixture containing ~10 times as much G1P as glucose. Why phosphorolysis? - product is already phosphorylated - no need to use an ATP - G1P can be readily converted into G6P by phosphoglucomutase.

Phosphorylase Kinase is activated by Phosphorylation and by Calcium Ions Phosphorylase kinase is activated by phosphorylation by an enzyme called protein kinase A (PKA).

Hormonal Control of Glycogen Metabolism Insulin, glucagon, and epinephrine profoundly influence glycogen metabolism. Glucagon and epinephrine release triggers the breakdown of glycogen. Glucagon and epinephrine bind to receptors on the plasma membrane of cells and trigger the release of the “second messenger” cyclic AMP.

Formation of Cyclic AMP

Cyclic AMP activation of protein kinase A Cyclic AMP-dependent protein kinase A (PKA) is activated when the two regulatory subunits bind cAMP and then release the active catalytic subunits.

Activation of Phosphorylase

Protein Phosphatase 1 (PP1) Reverses the effects of the kinases and plays an important role in regulating glycogen metabolism. It increases the rate of glycogen synthesis and decreases the rate of glycogen breakdown.

Inactivation of Glycogen Synthase

Epinephrine enhances glycogen breakdown while decreasing synthesis

Blood Glucose Levels are Regulated by Glycogen metabolism in the Liver The liver maintains the concentration of glucose in the blood between 80 and 120 mg/100 ml. The glucose sensor in the liver is phosphorylase a. - when glucose binds it exposes the phosphate group to protein phosphatase 1. - although PP1is normally bound to phosphorylase a it only cleaves off the Pi group when phosphorylase a binds glucose. - PP1 is released from phosphorylase b and then begins to dephosphorylate glycogen synthase (activates it).

The infusion of glucose into the bloodstream leads to the inactivation of phosphorylase, followed by the activation of glycogen synthase in the liver.

Insulin Stimulates Glycogen Synthesis by Activating Protein Phosphatase 1 The insulin-sensitive protein kinase phosphorylates the G subunit of PP1 at a different site than PKA, making it more active. The activated PP1 then dephosphorylates glycogen synthase, phosphorylase kinase, and phosphorylase causing increased glycogen synthesis and decreased glycogen breakdown.

Different Effects of Glucagon and Epinephrine Epinephrine - “fight or flight” hormone Also known as Adrenaline - rate of glycolysis may increase 2000-fold Epinephrine activates glycogen breakdown in both muscle and liver. Glucagon has a different role, maintaining blood glucose levels. Glucagon does not activate glycogen breakdown in muscle.

Consumption of muscle glycogen during exercise.

Rate of glycogen replenishment after exhaustive exercice.

massive accumulation of glycogen in liver and kidneys. von Gierke Disease - A Glycogen Storage Disease enlarged abdomen, thin extremities, striking elevation of serum triglycerides, hypoglycemia, etc. massive accumulation of glycogen in liver and kidneys. in 1952 Carl and Gerti Cori showed that it results from the absence of glucose-6-phosphatase, which blocks the last steps of glycogenolysis and gluconeogenesis. greatly increased glycolysis resulting in lactic acidosis. treatment attempts to maintain blood glucose levels.