Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.

Slides:



Advertisements
Similar presentations
DNA Technology and Genomics
Advertisements

DNA Technology and Genomics
Chapter 14: Genetic Engineering -Modification of the DNA of an organism to produce new genes with new characteristics.
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings.
How to characterize a single piece of DNA - Isolate a small fragment of DNA - Insert DNA into plasmid (or phage vector) -Transform recombinant DNA molecule.
Ch 12. Lac Operon 0Kh4&feature=relatedhttp:// 0Kh4&feature=related
Ch 12. Researchers can insert desired genes into plasmids, creating recombinant DNA and insert those plasmids into bacteria Bacterium Bacterial chromosome.
Gene Cloning Techniques for gene cloning enable scientists to prepare multiple identical copies of gene-sized pieces of DNA. Most methods for cloning pieces.
Chapter 20: Biotechnology Ms. Whipple Brethren Christian High School.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Manipulating the Genome: DNA Cloning and Analysis 20.1 – 20.3 Lesson 4.8.
DNA TECHNOLOGY DNA recombination or genetic engineering is the direct manipulation of genes for practical purposes.
Concept 20.1: DNA cloning yields multiple copies of a gene or other DNA segment To work directly with specific genes, scientists prepare well-defined segments.
CHAPTER 12 DNA Technology and the Human Genome
Chapter 12 DNA Technology February 27, DNA technology has led to advances in –creation of genetically modified crops and –identification and treatment.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
DNA Technology.
Objective 2: TSWBAT describe the basic process of genetic engineering and the applications of it.
Chapter 20~DNA Technology & Genomics. Who am I? Recombinant DNA n Def: DNA in which genes from 2 different sources are linked n Genetic engineering:
DNA Technology Ch. 20 Figure 20.1 An overview of how bacterial plasmids are used to clone genes.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Chapter 20: DNA Technology and Genomics.
Chapter 20 Notes: DNA Technology. Understanding & Manipulating Genomes 1995: sequencing of the first complete genome (bacteria) 2003: sequencing of the.
AP Biology Ch. 20 Biotechnology.
Genetic Engineering and Recombinant DNA
GENE TECHNOLOGY Chapter 8.
N Understanding and Manipulating Genomes n One of the greatest achievements of modern science –Has been the sequencing of the human genome, which was largely.
Genetic technology. Some terminology Genetic engineering –Direct manipulation of genes for practical purposes Biotechnology –Manipulation of organisms.
What are the Techniques of Biotechnology ? Restriction Endonucleases: enzymes that cut DNA at specific codes (nucleotide sequences) –Can buy from suppliers:
© 2012 Pearson Education, Inc. Lecture by Edward J. Zalisko PowerPoint Lectures for Campbell Biology: Concepts & Connections, Seventh Edition Reece, Taylor,
Manipulating DNA.
DNA Technology.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert.
Items for tomorrow and beyond: 1) Study/read captions for all figures within Chapter 20 2) Read Section 20.5 (applications of biotechnology) on pp
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Biotechnology.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
12.10 Gel electrophoresis sorts DNA molecules by size
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Concept 20.1: DNA cloning yields multiple copies of a gene or other DNA segment To work directly with specific genes, scientists prepare well-defined segments.
Chapter 20: DNA Technology and Genomics - Lots of different techniques - Many used in combination with each other - Uses information from every chapter.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings PowerPoint Lectures for Biology: Concepts and Connections, Fifth Edition – Campbell,
CHAPTER 20 BIOTECHNOLOGY. Biotechnology – the manipulation of organisms or their components to make useful products Biotechnology is used in all facets.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Chapter 20 DNA Technology and Genomics.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Chapter 19 DNA Technology. Genetic Engineering Genetic engineering Genetic engineering the manipulation of genetic material for practical purposes the.
Gene Cloning Techniques for gene cloning enable scientists to prepare multiple identical copies of gene-sized pieces of DNA. Most methods for cloning pieces.
DNA Technology and Genomics
DNA Technologies (Introduction)
DNA Technology & Genomics
Figure 20.2 Overview of gene cloning
Overview: Understanding and Manipulating Genomes
Additional DNA Technology AP Biology Ms. Day
Chapter 20: DNA Technology and Genomics
DNA Technology Now it gets real…..
Chapter 20 Biotechnology.
and PowerPoint “DNA Technology,” from
Chapter 20 – DNA Technology and Genomics
DNA Technology and Genomics
Chapter 20 Biotechnology.
Chapter 14 Bioinformatics—the study of a genome
Screening a Library for Clones Carrying a Gene of Interest
4.4 Genetic Engineering.
DNA Technology and Genomics
DNA Technology and Genomics
DNA Technology and Genomics
Chapter 20: DNA Technology and Genomics
GENE TECHNOLOGY Chapter 13.
Presentation transcript:

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero Chapter 20 DNA Technology and Genomics

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Restriction site DNA Restriction enzyme cuts the sugar-phosphate backbones at each arrow. One possible combination DNA fragment from another source is added. Base pairing of sticky ends produces various combinations. Fragment from different DNA molecule cut by the same restriction enzyme DNA ligase seals the strands. Recombinant DNA molecule Sticky end Using Restriction Enzymes to Make Recombinant DNA Bacterial restriction enzymes cut DNA molecules at DNA sequences called restriction sites – fragments with “sticky ends” Animation: Restriction Enzymes Animation: Restriction Enzymes

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Cloning a Eukaryotic Gene in a Bacterial Plasmid In gene cloning, the original plasmid is called a cloning vector A cloning vector is a DNA molecule that can carry foreign DNA into a cell and be replicated.

LE 20-4_1 Isolate plasmid DNA and human DNA. Cut both DNA samples with the same restriction enzyme. Mix the DNAs; they join by base pairing. The products are recombinant plasmids and many nonrecombinant plasmids. Bacterial cell lacZ gene (lactose breakdown) Human cell Restriction site amp R gene (ampicillin resistance) Bacterial plasmid Gene of interest Sticky ends Human DNA fragments Recombinant DNA plasmids

LE 20-4_2 Isolate plasmid DNA and human DNA. Cut both DNA samples with the same restriction enzyme. Mix the DNAs; they join by base pairing. The products are recombinant plasmids and many nonrecombinant plasmids. Bacterial cell lacZ gene (lactose breakdown) Human cell Restriction site amp R gene (ampicillin resistance) Bacterial plasmid Gene of interest Sticky ends Human DNA fragments Recombinant DNA plasmids Introduce the DNA into bacterial cells that have a mutation in their own lacZ gene. Recombinant bacteria

LE 20-4_3 Isolate plasmid DNA and human DNA. Cut both DNA samples with the same restriction enzyme. Mix the DNAs; they join by base pairing. The products are recombinant plasmids and many nonrecombinant plasmids. Bacterial cell lacZ gene (lactose breakdown) Human cell Restriction site amp R gene (ampicillin resistance) Bacterial plasmid Gene of interest Sticky ends Human DNA fragments Recombinant DNA plasmids Introduce the DNA into bacterial cells that have a mutation in their own lacZ gene. Recombinant bacteria Plate the bacteria on agar containing ampicillin and X-gal. Incubate until colonies grow. Colony carrying non- recombinant plasmid with intact lacZ gene Colony carrying recombinant plasmid with disrupted lacZ gene Bacterial clone

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Amplifying DNA in Vitro: The Polymerase Chain Reaction (PCR) The polymerase chain reaction, PCR, can produce many copies of a specific target segment of DNA Genomic DNA Target sequence Primers Denaturation: Heat briefly to separate DNA strands Annealing: Cool to allow primers to form hydrogen bonds with ends of target sequence Extension: DNA polymerase adds nucleotides to the 3 end of each primer Cycle 1 yields 2 molecules New nucleo- tides Cycle 2 yields 4 molecules Cycle 3 yields 8 molecules; 2 molecules (in white boxes) match target sequence

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Cathode Power source Anode Mixture of DNA molecules of differ- ent sizes Gel Glass plates Longer molecules Shorter molecules Gel Electrophoresis and Southern Blotting Gel electrophoresis - technique uses a gel as a molecular sieve to separate nucleic acids or proteins by size Video: Biotechnology Lab Video: Biotechnology Lab

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Restriction fragment analysis is useful for comparing two different DNA molecules, such as two alleles for a gene Normal  -globin allele 175 bp201 bpLarge fragment Sickle-cell mutant  -globin allele 376 bpLarge fragment Ddel Ddel restriction sites in normal and sickle-cell alleles of  -globin gene Normal allele Sickle-cell allele Large fragment 376 bp 201 bp 175 bp Electrophoresis of restriction fragments from normal and sickle-cell alleles

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Forensic Evidence DNA “fingerprints” obtained by analysis of tissue or body fluids can provide evidence in criminal and paternity cases Defendant’s blood (D) Blood from defendant’s clothes Victim’s blood (V)

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

Concept 20.5: The practical applications of DNA technology affect our lives in many ways Many fields benefit from DNA technology and genetic engineering

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Human Gene Therapy Gene therapy is the alteration of an afflicted individual’s genes Gene therapy holds great potential for treating disorders traceable to a single defective gene Vectors are used for delivery of genes into cells

LE Cloned gene Retrovirus capsid Bone marrow cell from patient Inject engineered cells into patient. Insert RNA version of normal allele into retrovirus. Viral RNA Let retrovirus infect bone marrow cells that have been removed from the patient and cultured. Viral DNA carrying the normal allele inserts into chromosome. Bone marrow

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Pharmaceutical Products Some pharmaceutical applications of DNA technology: – Large-scale production of human hormones and other proteins with therapeutic uses – Production of safer vaccines

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Environmental Cleanup Some modified microorganisms can be used to extract minerals from the environment or degrade potentially toxic waste materials

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Genetic Engineering in Plants Agricultural scientists have endowed a number of crop plants with genes for desirable traits Agrobacterium tumefaciens Ti plasmid Site where restriction enzyme cuts DNA with the gene of interest T DNA Recombinant Ti plasmid Plant with new trait