Vienna Conference of Instrumentation 2010 Paolo Beltrame CERN - PH/DT The AX-PET concept The Demonstrator Characterization Simulation and Reconstruction.

Slides:



Advertisements
Similar presentations
C. Joram1 Demonstration of an Axial PET concept for Brain and Small Animal Imaging The AXIAL PET concept Design of the Demonstrator (2 modules) Characterization.
Advertisements

1 Continuous Scintillator Slab with Microchannel Plate PMT for PET Heejong Kim 1, Chien-Min Kao 1, Chin-Tu Chen 1, Jean-Francois Genat 2, Fukun Tang 2,
PET Design: Simulation Studies using GEANT4 and GATE - Status Report - Martin Göttlich DESY.
Andrej Studen, Karol Brzezinski, Enrico Chesi, Vladimir Cindro, Neal H. Clinthorne, Milan Grkovski, Borut Grošičar, Klaus Honscheid, S. S. Huh, Harris.
1 A Design of PET detector using Microchannel Plate PMT with Transmission Line Readout Heejong Kim 1, Chien-Min Kao 1, Chin-Tu Chen 1, Jean-Francois Genat.
Planar scintigraphy produces two-dimensional images of three dimensional objects. It is handicapped by the superposition of active and nonactive layers.
Photon detection Visible or near-visible wavelengths
The Transverse detector is made of an array of 256 scintillating fibers coupled to Avalanche PhotoDiodes (APD). The small size of the fibers (5X5mm) results.
Report on SiPM Tests SiPM as a alternative photo detector to replace PMT. Qauntify basic characteristics Measure Energy, Timing resolution Develop simulation.
Development of Multi-pixel photon counters(2) M.Taguchi, T.Nakaya, M.Yokoyama, S.Gomi(kyoto) T.Nakadaira, K.Yoshimura(KEK) for KEKDTP photon sensor group.
K.C.RAVINDRAN,GRAPES-3 EXPERIMENT,OOTY 1 Development of fast electronics for the GRAPES-3 experiment at Ooty K.C. RAVINDRAN On Behalf of GRAPES-3 Collaboration.
Scintillation hodoscope with SiPM readout for the CLAS detector S. Stepanyan (JLAB) IEEE conference, Dresden, October 21, 2008.
First Results from a Test Bench for Very High Resolution Small Animal PET Using Solid-State Detectors Klaus Honscheid for The CIMA Collaboration The Ohio.
Performance limits of a 55  m pixel CdTe detector G.Pellegrini, M. Lozano, R. Martinez, M. Ullan Centro Nacional de Microelectronica, Barcelona, 08193,
Tests WLS - Readout axial PET - Bari - Janvier 2007 AXIAL PET - HPD AXIAL COORDINATE RECONSTRUCTION WITH WLS STRIPS
Development of Multi-pixel photon counters(2) M.Taguchi, T.Nakaya, M.Yokoyama, S.Gomi(kyoto) T.Nakadaira, K.Yoshimura(KEK)
COMPET Electronics and Readout
1 Development of Multi-Pixel Photon Counters (1) S.Gomi, T.Nakaya, M.Yokoyama, M.Taguchi, (Kyoto University) T.Nakadaira, K.Yoshimura, (KEK) Oct
Paolo Beltrame ER at CERN since April 2009 Advanced Photodetectors No details… only descriptions and feelings.
C. Joram - HPD-PET team - Bari (Italy), 17 January 2007 The 3D Axial PET Concept Christian Joram, CERN, PH-Department Positron Emission Tomography - Principle.
Increase in Photon Collection from a YAP:Ce Matrix Coupled to Wave Lenght Shifting Fibres N. Belcari a, A. Del Guerra a, A. Vaiano a, C. Damiani b, G.
16. January 2007Status Report On Compton Imaging Projects 1 Status Of Compton Imaging Projects Carried Out In The CIMA Collaboration HPD Brain PET Meeting.
Apollo Go, NCU Taiwan BES III Luminosity Monitor Apollo Go National Central University, Taiwan September 16, 2002.
Seoul National University Functional & Molecular Imaging System Lab Progress in Nuclear Imaging Mikiko Ito, PhD Dept. of Nuclear Medicine, Seoul National.
SAFIR: a fast PET insert for pre-clinical MRI with high temporal resolution Becker Robert 1, Jean-Pierre Cachemiche 2, Casella Chiara 1, Dissertori Günther.
R&D status of the Scintillator- strip based ECAL for the ILD Oct LCWS14 Belgrade Satoru Uozumi (KNU) For the CALICE collaboration Scintillator strips.
MPPC status M.Taguchi(kyoto) T2K ND /7/7.
Development of Multi-Pixel Photon Counters(MPPC) Makoto Taguchi Kyoto University.
Enhancing InBeam PET with single Photon (Compton) Detection CERN September 2nd 2008 VALENCIA GROUP, IFIMED José M. Benlloch (PET hardware, speaker) José.
A Single Photon Emission Computer Tomograph for breast cancer imaging S. Vecchio a, N. Belcari a, P. Bennati b, M. Camarda a, R. Campanini c, M. N. Cinti.
Timing Studies of Hamamatsu MPPCs and MEPhI SiPM Samples Bob Wagner, Gary Drake, Patrick DeLurgio Argonne National Laboratory Qingguo Xie Department of.
Test beam preliminary results D. Di Filippo, P. Massarotti, T. Spadaro.
Medical applications of particle physics General characteristics of detectors (5 th Chapter) ASLI YILDIRIM.
FSC Status and Plans Pavel Semenov IHEP, Protvino on behalf of the IHEP PANDA group PANDA Russia workshop, ITEP 27 April 2010.
C. Joram1 The AX-PET project What was achieved ? What’s left to be done ? Are there ideas for a continuation ? Practicalities concerning the completion.
P. Rodrigues, A. Trindade, L.Peralta, J. Varela GEANT4 Medical Applications at LIP GEANT4 Workshop, September – 4 October LIP – Lisbon.
Time and amplitude calibration of the Baikal-GVD neutrino telescope Vladimir Aynutdinov, Bair Shaybonov for Baikal collaboration S Vladimir Aynutdinov,
Scintillators suitable for PET applications must be characterized by a high efficiency for gamma-ray detection, determined by a high density and atomic.
Peter Dendooven LaBr 3 and LYSO monolithic crystals coupled to photosensor arrays for TOF-PET Physics for Health in Europe Workshop February 2-4, 2010,
1 Rome, 14 October 2008 Joao Varela LIP, Lisbon PET-MRI Project in FP7 LIP Motivations and Proposals.
Normal text - click to edit MAPD/MPPC Characterization & Axial PET 1.
Potential Advantages of Digitally Sampling Scintillation Pulses in Time Determination in PET Q. Xie 1,2, C.-M. Kao 1, X. Wang 2, N. Guo 2, C. Zhu 2, H.
F. Garibaldi 1,, F. Cusanno 1), S. Majewski 3), N. Clinthorne, P. Musico 4),…………………………. TOPEM: a PET TOF probe, compatible with MRI and MRS for diagnosis.
Testbeam analysis Lesya Shchutska. 2 beam telescope ECAL trigger  Prototype: short bars (3×7.35×114 mm 3 ), W absorber, 21 layer, 18 X 0  Readout: Signal.
ArgonneResult_ ppt1 Comparison of data and simulation of Argonne Beam Test July 10, 2004 Tsunefumi Mizuno
A Brand new neutrino detector 「 SciBar 」 (2) Y. Takubo (Osaka) - Readout Electronics - Introduction Readout electronics Cosmic ray trigger modules Conclusion.
Status of NEWCHOD E.Guschin (INR), S.Kholodenko (IHEP), Yu.Kudenko (INR), I.Mannelli (Pisa), O.Mineev (INR), V.Obraztsov (IHEP), V.Semenov(IHEP), V.Sugonyaev.
Update on works with SiPMs at Pisa Matteo Morrocchi.
Upgrade of the MEG liquid xenon calorimeter with VUV-light sensitive large area SiPMs Kei Ieki for the MEG-II collaboration 1 II.
Geant4 Simulation for KM3 Georgios Stavropoulos NESTOR Institute WP2 meeting, Paris December 2008.
Study of the MPPC for the GLD Calorimeter Readout Satoru Uozumi (Shinshu University) for the GLD Calorimeter Group Kobe Introduction Performance.
Simulations in Medical Physics Y. TOUFIQUE*, R.CHERKAOUI EL MOURSLI*, M.KACI**, G.AMOROS**, *Université Mohammed V –Agdal, Faculté des Sciences de Rabat,
Development of Multi-pixel photon counters(2) M.Taguchi, T.Nakaya, M.Yokoyama, S.Gomi(kyoto) T.Nakadaira, K.Yoshimura(KEK) for KEKDTP photon sensor group.
+ Voxel Imaging Pizza Gianluca De Lorenzo. + Positron Emission Tomography April Gianluca De Lorenzo.
Performance of scintillation pixel detectors with MPPC read-out and digital signal processing Mihael Makek with D. Bosnar, V. Gačić, L. Pavelić, P. Šenjug.
The AX-PET Project: Progress and Recent Results
Fabio, Francesco, Francesco and Nicola INFN and University Bari
Trigger System for a Thin Time-of-flight PET scanner
The PSD at Pb-Pb run PSD drawbacks at Ar beam
CTA-LST meeting February 2015
PET Activities at UiO NFR Review E. Bolle*
Fast SiPM readout for PET
Development of a High Precision Axial 3-D PET for Brain Imaging
CLAS12 Forward Detector Element PCAL
Application of Nuclear Physics
Deng Ziyan Jan 10-12, 2006 BESIII Collaboration Meeting
X. Zhu1, 3, Z. Deng1, 3, A. Lan2, X. Sun2, Y. Liu1, 3, Y. Shao2
BESIII EMC electronics
MCP PET Simulation (7) – Pixelated X-tal
md-NUV PET project meeting
Presentation transcript:

Vienna Conference of Instrumentation 2010 Paolo Beltrame CERN - PH/DT The AX-PET concept The Demonstrator Characterization Simulation and Reconstruction Next steps and future plans

The AX-PET Collaboration VCI P. Beltrame Istituto Nazionale di Fisica Nucleare Bari (INFN) Ohio State University (OSU) European Organization for Nuclear Research (CERN) University of Michigan University of Rome La Sapienza (INFN) Instituto de Fisica Corpuscular (IFIC) Paul Scherrer Institute (PSI) Eidgenössische Technische Hochschule (ETH) P. Beltrame, A. Braem, V. Fanti, C. Joram, T. Schneider, J. Séguinot, C. Casella, G. Dissertori, L. Djambazov, W. Lustermann, F. Nessi-Tedaldi, F. Pauss, D. Schinzel, P. Solevi, J. F. Oliver, M. Rafecas, R. De Leo, E. Nappi, E. Chesi, H. Kagan, A. Rudge, P. Weilhammer, D. Renker, N. Clinthorne, E. Bolle, S. Stapnes, F. Meddi 1

General introduction VCI P. Beltrame2 PET: Positron Emission Tomography metabolic active molecule marked with isotope  + emitter e + e - annihilation: back to back photons of 511 keV

The standard PET VCI P. Beltrame Short, radially oriented crystals Readout in blocks by PMTs No Depth of Interaction (some exceptions) 3 L pp  No Depth of Interaction knowledge  Parallax error Detection efficiency Radial resolution Radial resolution Detection Efficiency

From PET to AX-PET VCI P. Beltrame4 short radial oriented, block readout crystals short radial oriented, block readout crystals From long axially oriented, individually readout crystals long axially oriented, individually readout crystals … to

THE CONCEPT AND THE DEMONSTRATOR VCI P. Beltrame5

The crystal+WLS “grid” VCI P. Beltrame6 scintillation light wavelength shifted light Crystal WLS MPPC x y z Light transport along the bars and the strips by means of total internal reflection Light detection - crystals: energy and x,y-location - WLS strips: z-position along the crystal How to measure the axial coordinate?

The crystal+WLS “read out” VCI P. Beltrame7 Light detection by novel photo detectors G-APD = MPPC = SiPM High PDE: ~50% Very fast: <1 ns peaking time Immune to B-field (used in combination with MRI and CT) How to read the crystals? scintillation light wavelength shifted light Crystal WLS MPPC x y z

The AX-PET components: LYSO VCI P. Beltrame8 Crystal material: LYSO Manufacturer: Saint-Gobain Dimensions: 3 × 3 × 100 mm 3 Crystal material: LYSO Manufacturer: Saint-Gobain Dimensions: 3 × 3 × 100 mm 3 Prelude 420 TM Chemical composition: Lu 9 YSiO 25 Non hygroscopic Density: 7.1 g/cm 3 Absorption length: 1.2 cm Peak emission spectrum: 420 nm Refraction index (420 nm): 1.81 Light yield: 32 photons / keV Decay time: 41 ns, single exponential

The AX-PET components: WLS VCI P. Beltrame9 WLS material: Polyvinyltoluene + dopant Manufacturer: ELJEN Technology Dimensions: 0.9 × 3 × 40 mm 3 WLS material: Polyvinyltoluene + dopant Manufacturer: ELJEN Technology Dimensions: 0.9 × 3 × 40 mm 3 EJ 280 Shifts blue light into green one Density: g/cm 3 Maximum absorption: 425 nm Maximum emission: 490 nm Refraction index: 1.58 Decay time: 8.5 ns QE (fluorescent material): 0.86% Doping: 10x with respect to standard MPPC Kapton cable

The AX-PET components: photo detectors VCI P. Beltrame10 MPPC Manufacturer: Hamamatsu MPPC Manufacturer: Hamamatsu MPPC LYSO: S C active area: 3 x 3 mm pixels of 50 x 50  m 2 Gain: 5.7 x 10 5 Ceramic package 5.9 x 6.6 mm 2 MPPC LYSO: S C active area: 3 x 3 mm pixels of 50 x 50  m 2 Gain: 5.7 x 10 5 Ceramic package 5.9 x 6.6 mm 2 MPPC WLS: MPPC-OCTAGON-SMD custom made active area: 3.22 x 1.19 mm pixels of 70 x 70  m 2 Gain: 4 x 10 5 Octagonal plastic package MPPC WLS: MPPC-OCTAGON-SMD custom made active area: 3.22 x 1.19 mm pixels of 70 x 70  m 2 Gain: 4 x 10 5 Octagonal plastic package Operational voltage: ~70 V Crystal readout WLS readout

6 1 layer Layers optically separated 1.75 mm staggering 3.5 mm LYSO pitch 7 mm distance between layers 3.2 mm WLS pitch VCI P. Beltrame11 Two identical modules. Each module: - 48 LYSO bars (6 layers x 8 crystals) WLS strips (6 layers x 26 strips) LYSO bars WLS strips WLS MPPC LYSO MPPC The Demonstrator 2 modules -> 408 channels Crystals and WLS strips read out on alternate sides to allow maximum packing density

Putting everything together VCI P. Beltrame12

Fully assembled module VCI P. Beltrame13

… with light protection cover and cables VCI P. Beltrame14

Front-End electronics VCI P. Beltrame15 S&H Bias VATAGP5 (128 ch.) ‘slow’ fast OPA486  E (crystals only) test Analog output: Light per crystal / WLS Channels above threshold MPPC Analog readout of crystals and WLS strips Sequential or sparse (only channels above threshold) Fast energy sum of all crystals of 1 module Trigger on 2 x 511 keV deposition in 2 modules 1 channel (simplified)

VCI P. Beltrame16 CHARACTERIZATION

Test set up VCI P. Beltrame17 Single module characterization PMT 2D moving station Tagger Source Module 22 Na source (ø = 250μm; A = ~900 kBq) Module in coincidence with a tagging scintillator Use of different tagging crystals Two module characterization Distance between modules = 15 cm 2D moving station Module 1 Module 2 Source

Energy calibration VCI P. Beltrame18 Deviation from linearity due to MPPC saturation (3600 pixels), ~5% effect Parameterization: logarithmic function Intrinsic Lu radioactivity + Photopeak  “self-calibrating” device [63 keV] [202 keV] [303 keV] [511 keV]

Energy resolution VCI P. Beltrame19 Individual crystals: keV (averaged on all crystals) Sum signal (48 crystals) R_FWHM_Sum keV (on the summed distribution)

Axial (z) resolution VCI P. Beltrame20 lay6 lay5lay4 lay1 lay3 lay2 z coordinate = CofG of hit WLS strips (typically 2-4)  i [i=1,6] include: intrinsic spatial resolution beam spot size on each layer  (d=0) ~0.76 mm FWHM ~1.8 mm (still includes size of source) x y z  layer 6  1

First coincidence measurements VCI P. Beltrame21 Photoelectric events only (1 hit crystal per module) Draw “LOR” (pure geometrical)

Estimate of axial resolution VCI P. Beltrame22 Intersection with central plane Resolution still includes size of source. Finite positron range (in water: = 0.6 mm) FWHM = 1.5 mm

VCI P. Beltrame23 SIMULATION AND RECONSTRUCTION

Simulation VCI P. Beltrame24 Geant4: multi-purpose Monte Carlo tool (optical transport, dedicated geometry) GATE: PET dedicated MC (time dependent phenomena, scanner rotation, source/phantoms...) Energy - E LOW =40 keV, E SUM =[400,600] keV Excellent data/MC agreement

Reconstruction VCI P. Beltrame25 Dedicated reconstruction code, based on MLEM (Maximum Likelihood Expectation Maximization) Geometrical component of the System Matrix computed using Siddon's ray-tracing technique. In addition, crystal attenuation and penetration effects also taken into account in the System Matrix Code tested with several Monte Carlo phantoms Monte Carlo data for a cylindrical source: D = 10 mm, h = 10 mm 10 mm FOV: 25 x 25 x 25 mm 3 Voxel: 25 x 25 x 25 vox 3 #steps = 6 Distance = 10 cm Projections (x, y, z) 3D image

VCI P. Beltrame26 SUMMARY + NEXT STEPS AND FUTURE PLANS

Summarizing the AX-PET main features VCI P. Beltrame27 3D localization of photons parallax-free Optimization of spatial resolution (reducing crystal and WLS strip dimensions) and sensitivity (adding layers) can be done independently. Possibility of identification a significant fraction of Compton interactions (Inter Crystal Scatter). ICS events can either be discarded (resolution fully maintained) or reconstructed (increased sensitivity). Scaling in size and in number of layers to match specific needs: brain PET, small animal PET, PEM (mammography), full body PET. Concept and components are in principle MRI compatible and TOF extendable.

What’s next VCI P. Beltrame28 At CERN Mount set-up on a horizontal gantry (rotating source + 1 module rotation +/- 60°) At ETH Zurich in cooperation with Centre for radio-pharmaceutical Science April 2010 Tomographic reconstruction of small animal phantoms (FDG) Optimization of Monte Carlo and reconstruction code Time scale 1 year Performance extrapolation (Monte Carlo) to full scanner and specific geometries

small animals VCI P. Beltrame29 brain AX-PET a novel concept for … THANKS FOR YOUR ATTENTION

BACK-UP SLIDES VCI P. Beltrame30

LYSO and WLS VCI P. Beltrame31 Density [g/cm3]7.1 Attenuation length for 511 keV [cm]1.2 Wavelength of maximum emission [nm]420 Refractive index at W.L. of max. emission1.81 Light yield [photons/keV]32 Average temperature coefficient [%/K]-0.28 Decay time [ns]41 Intrinsic energy resolution [%, FWHM]~8 Natural radioactivity [Bq/cm 3 ]~300 Effective optical absorption length [mm]~420

Read Out Electronics VCI P. Beltrame32 Preamplifiers Fast operational amplifiers (~1 GHZ gain x bandwidth) 50 ohm input impedance ~50 cm away from the modules, co-axial cables (50 ) Sum signals of one module Coincidence Trigger Preamplifiers Fast operational amplifiers (~1 GHZ gain x bandwidth) 50 ohm input impedance ~50 cm away from the modules, co-axial cables (50 ) Sum signals of one module Coincidence Trigger DAQ… VATA GP5 128 channel charge integrating amplifier (64 channel used) Shaping time ~250 ns Fast shaper ~40 ns plus discriminators  self triggering Hit register  sparse mode readout DAQ… VATA GP5 128 channel charge integrating amplifier (64 channel used) Shaping time ~250 ns Fast shaper ~40 ns plus discriminators  self triggering Hit register  sparse mode readout Bias supply (custom designed) 256 channels (from 0 to 100 V) AD5535; 32 channel HV DAC Precision ~10 mV after individual calibration of all channels USB interface Bias supply (custom designed) 256 channels (from 0 to 100 V) AD5535; 32 channel HV DAC Precision ~10 mV after individual calibration of all channels USB interface Coincidence Trigger Coincidence of sum of module signals with the other module Thresholds set using oscilloscope e + e - annihilation events Self Triggering VATA GP5 Moderate threshold  LYSO intrinsic radioactivity Low threshold  pedestal measurement Coincidence Trigger Coincidence of sum of module signals with the other module Thresholds set using oscilloscope e + e - annihilation events Self Triggering VATA GP5 Moderate threshold  LYSO intrinsic radioactivity Low threshold  pedestal measurement

VCI P. Beltrame33

VCI P. Beltrame34

Energy calibration VCI P. Beltrame35 Sum of energy depositions in crystals of one module Module 2 Module 1 Fit a double Gaussian distribution to the sum of the energy depositions of all crystals of one module with mean values: E p = photo peak energy E p – 63 keV to take into account the Luthetium K  escape line at 63 keV Energy resolution: 12.34% FWHM (Module 1) 12.53% FWHM (Module 2) Peak Position: (511.7 ± 0.6) keV (Module 1) (511.8 ± 0.6) keV (Module 2)

Time performances VCI P. Beltrame36 First estimate of the time resolution: measure delay of coincidence wrt Module2 measurement from the scope [Lecroy Waverunner LT584 L 1GHz] Trigger MODULE1 LYSO SUM Time resolution : σ ~800 ps MODULE2 LYSO SUM

VCI P. Beltrame37