Interferometer Topologies and Prepared States of Light – Quantum Noise and Squeezing Convenor: Roman Schnabel.

Slides:



Advertisements
Similar presentations
Beyond The Standard Quantum Limit B. W. Barr Institute for Gravitational Research University of Glasgow.
Advertisements

Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) HOMODYNE AND HETERODYNE READOUT OF A SIGNAL- RECYCLED GRAVITATIONAL WAVE DETECTOR.
Dual Recycling for GEO 600 Andreas Freise, Hartmut Grote Institut für Atom- und Molekülphysik Universität Hannover Max-Planck-Institut für Gravitationsphysik.
Albert-Einstein-Institute Hannover ET filter cavities for third generation detectors ET filter cavities for third generation detectors Keiko Kokeyama Andre.
G v1Squeezed Light Interferometry1 Squeezed Light Techniques for Gravitational Wave Detection July 6, 2012 Daniel Sigg LIGO Hanford Observatory.
Koji Arai – LIGO Laboratory / Caltech LIGO-G v2.
Next generation nonclassical light sources for gravitational wave detectors Stefan Ast, Christoph Baune, Jan Gniesmer, Axel Schönbeck, Christina Vollmer,
Jan 29, 2007 LIGO Excomm, G R 1 Goal: Experimental Demonstration of a Squeezing-Enhanced Laser-Interferometric Gravitational Wave Detector in.
Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 5.
1 Experimental Demonstration of a Squeezing-Enhanced Laser-Interferometric Gravitational-Wave Detector Keisuke Goda Quantum Measurement Group, LIGO Massachusetts.
Squeezing for Advanced LIGO L. Barsotti LIGO Laboratory – MIT G Enhanced Interferometers Session --- May 18, 2015.
TeV Particle Astrophysics August 2006 Caltech Australian National University Universitat Hannover/AEI LIGO Scientific Collaboration MIT Corbitt, Goda,
Generation of squeezed states using radiation pressure effects David Ottaway – for Nergis Mavalvala Australia-Italy Workshop October 2005.
Ponderomotive Squeezing & Opto-mechanics Adam Libson and Thomas Corbitt GWADW 2015 G
Recent Developments toward Sub-Quantum-Noise-Limited Gravitational-wave Interferometers Nergis Mavalvala Aspen January 2005 LIGO-G R.
GWADW, May 2012, Hawaii D. Friedrich ICRR, The University of Tokyo K. Agatsuma, S. Sakata, T. Mori, S. Kawamura QRPN Experiment with Suspended 20mg Mirrors.
Quantum Noise Measurements at the ANU Sheon Chua, Michael Stefszky, Conor Mow-Lowry, Sheila Dwyer, Ben Buchler, Ping Koy Lam, Daniel Shaddock, and David.
RF readout scheme to overcome the SQL Feb. 16 th, 2004 Aspen Meeting Kentaro Somiya LIGO-G Z.
White Light Cavity Ideas and General Sensitivity Limits Haixing Miao Summarizing researches by several LSC groups GWADW 2015, Alaska University of Birmingham.
Experiments towards beating quantum limits Stefan Goßler for the experimental team of The ANU Centre of Gravitational Physics.
Test mass dynamics with optical springs proposed experiments at Gingin Chunnong Zhao (University of Western Australia) Thanks to ACIGA members Stefan Danilishin.
Experimental Characterization of Frequency Dependent Squeezed Light R. Schnabel, S. Chelkowski, H. Vahlbruch, B. Hage, A. Franzen, N. Lastzka, and K. Danzmann.
A. Bunkowski Nano-structured Optics for GW Detectors 1 A.Bunkowski, O. Burmeister, D. Friedrich, K. Danzmann, and R. Schnabel in collaboration with T.
Generation and Control of Squeezed Light Fields R. Schnabel  S.  Chelkowski  A.  Franzen  B.  Hage  H.  Vahlbruch  N. Lastzka  M.  Mehmet.
Optomechanical Devices for Improving the Sensitivity of Gravitational Wave Detectors Chunnong Zhao for Australian International Gravitational wave Research.
SQL Related Experiments at the ANU Conor Mow-Lowry, G de Vine, K MacKenzie, B Sheard, Dr D Shaddock, Dr B Buchler, Dr M Gray, Dr PK Lam, Prof. David McClelland.
LSC 03/2005 LIGO-G Z S. Chelkowskicharacterization of squeezed states 1 Experimental characterization of frequency-dependent squeezed light Simon.
Eighth Edoardo Amaldi Conference on Gravitational Waves Sheon Chua, Michael Stefszky, Conor Mow-Lowry, Daniel Shaddock, Ben Buchler, Kirk McKenzie, Sheila.
AIC: Activity report K.A. Strain MIT July 2007 G R.
Quantum noise observation and control A. HeidmannM. PinardJ.-M. Courty P.-F. CohadonT. Briant O. Arcizet T. CaniardJ. Le Bars Laboratoire Kastler Brossel,
S. ChelkowskiSlide 1WG1 Meeting, Birmingham 07/2008.
LIGO-G R Quantum Noise in Gravitational Wave Interferometers Nergis Mavalvala PAC 12, MIT June 2002 Present status and future plans.
Einstein gravitational wave Telescope Which optical topologies are suitable for ET? Andreas Freise for the ET WG3 working group MG12 Paris.
Opto-mechanics with a 50 ng membrane Henning Kaufer, A. Sawadsky, R. Moghadas Nia, D.Friedrich, T. Westphal, K. Yamamoto and R. Schnabel GWADW 2012,
Dual Recycling in GEO 600 H. Grote, A. Freise, M. Malec for the GEO600 team Institut für Atom- und Molekülphysik University of Hannover Max-Planck-Institut.
Alexander Khalaidovski, Henning Vahlbruch, Hartmut Grote, Harald Lück, Benno Willke, Karsten Danzmann and Roman Schnabel STATUS OF THE GEO HF SQUEEZED.
SQL Related Experiments at the ANU Conor Mow-Lowry, G de Vine, K MacKenzie, B Sheard, Dr D Shaddock, Dr B Buchler, Dr M Gray, Dr PK Lam, Prof. David McClelland.
AIC, LSC / Virgo Collaboration Meeting, 2007, LLO Test-mass state preparation and entanglement in laser interferometers Helge Müller-Ebhardt, Henning Rehbein,
PONDEROMOTIVE ROTATOR: REQUIREMENTS Zach Korth (Caltech) – GWADW ‘12 – Waikoloa, HI.
Ultra-stable, high-power laser systems Patrick Kwee on behalf of AEI Hannover and LZH Advanced detectors session, 26. March 2011 Albert-Einstein-Institut.
Carmen Porto Supervisor: Prof. Simone Cialdi Co-Supervisor: Prof. Matteo Paris PhD school of Physics.
QND, LSC / Virgo Collaboration Meeting, 2007, HannoverH. Müller-Ebhardt Entanglement between test masses Helge Müller-Ebhardt, Henning Rehbein, Kentaro.
Optomechanics Experiments
Lisa Barsotti LIGO/MIT
Detuned Twin-Signal-Recycling
Lisa Barsotti (LIGO-MIT)
Current and future ground-based gravitational-wave detectors
Roman Schnabel for the AEI-Division Karsten Danzmann
Quantum Opportunities in Gravitational Wave Detectors
Overview of quantum noise suppression techniques
The Quantum Limit and Beyond in Gravitational Wave Detectors
Progress toward squeeze injection in Enhanced LIGO
Interferometric speed meter as a low-frequency gravitational-wave detector Helge Müller-Ebhardt Max-Planck-Institut für Gravitationsphysik (AEI) and Leibniz.
Nergis Mavalvala Aspen January 2005
MIT Corbitt, Goda, Innerhofer, Mikhailov, Ottaway, Pelc, Wipf Caltech
Generation of squeezed states using radiation pressure effects
Quantum noise reduction techniques for the Einstein telescope
Homodyne readout of an interferometer with Signal Recycling
Quantum Noise in Gravitational Wave Interferometers
Quantum effects in Gravitational-wave Interferometers
Nergis Mavalvala Aspen February 2004
Australia-Italy Workshop October 2005
Quantum Optics and Macroscopic Quantum Measurement
Squeezed states in GW interferometers
Optical Squeezing For Next Generation Interferometric Gravitational Wave Detectors Michael Stefszky, Sheon Chua, Conor Mow-Lowry, Ben Buchler, Kirk McKenzie,
LIGO Quantum Schemes NSF Review, Oct
Squeezed Input Interferometer
Squeezed Light Techniques for Gravitational Wave Detection
RF readout scheme to overcome the SQL
Advanced Optical Sensing
Presentation transcript:

Interferometer Topologies and Prepared States of Light – Quantum Noise and Squeezing Convenor: Roman Schnabel

Albert - Einstein- Institut Roman Schnabel, 16 / May / :30 R. Schnabel (AEI) Introduction: Why Squeezing is Remarkable 8:45 S. Dwyer (MIT) The Squeezed H1 Detector 9:08 H. Grote (AEI) The Squeezed GEO Detector 9:30 Break 10:00 H. Miao (UWA) Introduction to Radiation Pressure Noise Squeezing and Opto-mechanical Coupling 10:20 P. Kwee (MIT) Filter Cavity Concepts 10:35 R. Ward (ANU) Ponderomotive Squeezing Rotator 10:50 Z. Korth (Caltech) Optomechanically Induced Transparancy 11:05 B. Barr (Glasgow) Observing Optical Springs with 100g Mirrors 11:25 G. Cole (Vienna) Quantum Optomechanics 11:45 H. Kaufer (AEI) Optomechanics with a 50ng Membrane 12:00 K. Agatsuma (NAOJ) Accurate Quantum Efficiency Measurement 12:15 D. Friedrich (ICRR) Quantum Radiation Pressure Experiment with a suspended 20mg Mirror 12:30 Adjourn Interferometer Topologies and Prepared States of Light – Quantum Noise and Squeezing

Why Squeezing is Remarkable Roman Schnabel Albert-Einstein-Institut (AEI) Institut für Gravitationsphysik Leibniz Universität Hannover

Albert - Einstein- Institut Roman Schnabel, 16 / May / 2012 Laser 50% Beam splitter Gravitational Wave Detection Mirror 1 Mirror 2 2) Laser light ~ km 3) Interference 4) Photo-electric effect Photo diode 4 Photo-electric current modulated at GW frequency (“unbiased estimator”) 1) Test masses

Albert - Einstein- Institut Roman Schnabel, 16 / May / 2012 Photo-Electric Current 5 Time intervals Photons per time interval N A gravitational wave signal?

Albert - Einstein- Institut Roman Schnabel, 16 / May / 2012 Photo-Electric Current 6 Time intervals Photons per time interval N No signal, but photon shot noise?

Albert - Einstein- Institut Roman Schnabel, 16 / May / 2012 Photon Counting Statistics Coherent state Photon number N Probability [rel. units] 7 Relative shot-noise

Albert - Einstein- Institut Roman Schnabel, 16 / May / 2012 Squeezing factor: 3 dB Squeezing factor: 10 dB “Squeezed” Counting Statistics Photon number N Probability [rel. units] 8 Noise squeezing

Albert - Einstein- Institut Roman Schnabel, 16 / May / 2012 Shot-Noise High power laser Photo diode 9

Albert - Einstein- Institut Roman Schnabel, 16 / May / 2012 Squeezed light laser Faraday Rotator Shot-Noise Squeezing High power laser Photo diode 10 [Caves, Phys. Rev. D 23, 1693 (1981)]

Albert - Einstein- Institut Roman Schnabel, 16 / May / Standing wave cavity Generation of Squeezed Light (PDC)  2 -nonlinear crystal: MgO:LiNbO 3 or PPKTP Pump field input (cw, 532nm) Squeezed field output (cw, 1064nm) by parametric down-conversion (PDC)

Albert - Einstein- Institut Roman Schnabel, 16 / May / 2012 The GEO600 Squeezed Light Laser 12

Albert - Einstein- Institut Roman Schnabel, 16 / May / nm / Time Series 13 r = 0 r = 0.5 r = 1 r = 5 MHz dB squeezing parameter: [T. Eberle et al., PRL 104, (2010)] (a) shot noise (b) squeezing (c) anti-squeezing

Albert - Einstein- Institut Roman Schnabel, 16 / May / nm / Scaling with Pump dB [M. Mehmet et al., Opt. Exp. 19, (2011)]

Albert - Einstein- Institut Roman Schnabel, 16 / May / 2012 Frequency Dependent Squeezing 15 [Chelkowski et al., Phys. Rev. A 71, (2005)]. X1X1 X2X2 Detuned filter cavity [Kimble et al.]

Albert - Einstein- Institut Roman Schnabel, 16 / May / :30 R. Schnabel (AEI) Introduction: Why Squeezing is Remarkable 8:45 S. Dwyer (MIT) The Squeezed H1 Detector 9:08 H. Grote (AEI) The Squeezed GEO Detector 9:30 Break 10:00 H. Miao (UWA) Introduction to Radiation Pressure Noise Squeezing and Opto-mechanical Coupling 10:20 P. Kwee (MIT) Filter Cavity Concepts 10:35 R. Ward (ANU) Ponderomotive Squeezing Rotator 10:50 Z. Korth (Caltech) Optomechanically Induced Transparancy 11:05 B. Barr (Glasgow) Observing Optical Springs with 100g Mirrors 11:25 G. Cole (Vienna) Quantum Optomechanics 11:45 H. Kaufer (AEI) Optomechanics with a 50ng Membrane 12:00 K. Agatsuma (NAOJ) Accurate Quantum Efficiency Measurement 12:15 D. Friedrich (ICRR) Quantum Radiation Pressure Experiment with a suspended 20mg Mirror 12:30 Adjourn Interferometer Topologies and Prepared States of Light – Quantum Noise and Squeezing