MTH15_Lec-09_sec_2-4_Derivative_Chain_Rule_.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical Engineer Chabot Mathematics §2.4 Derivative Chain Rule
MTH15_Lec-09_sec_2-4_Derivative_Chain_Rule_.pptx 2 Bruce Mayer, PE Chabot College Mathematics Review § Any QUESTIONS About §2.3 → Product & Quotient Rules Any QUESTIONS About HomeWork §2.3 → HW-9 2.3
MTH15_Lec-09_sec_2-4_Derivative_Chain_Rule_.pptx 3 Bruce Mayer, PE Chabot College Mathematics §2.4 Learning Goals Define the Chain Rule Use the chain rule to find and apply derivatives
MTH15_Lec-09_sec_2-4_Derivative_Chain_Rule_.pptx 4 Bruce Mayer, PE Chabot College Mathematics The Chain Rule If y = f(u) is a Differentiable Function of u, and u = g(x) is a Differentiable Function of x, then the Composition Function y = f(g(x)) is also a Differentiable Function of x whose Derivative is Given by:
MTH15_Lec-09_sec_2-4_Derivative_Chain_Rule_.pptx 5 Bruce Mayer, PE Chabot College Mathematics The Chain Rule - Stated That is, the derivative of the composite function is the derivative of the “outside” function times the derivative of the “inside” function.
MTH15_Lec-09_sec_2-4_Derivative_Chain_Rule_.pptx 6 Bruce Mayer, PE Chabot College Mathematics Chain Rule – Differential Notation A Simpler, but slightly Less Accurate, Statement of the Chain Rule → If y = f(u) and u = g(x), then: Again Approximating the differentials as algebraic quantities arrive at “Differential Cancellation” which helps to Remember the form of the Chain Rule
MTH15_Lec-09_sec_2-4_Derivative_Chain_Rule_.pptx 7 Bruce Mayer, PE Chabot College Mathematics Chain Rule Demonstrated Without chain rule, using expansion: Using the Chain Rule:
MTH15_Lec-09_sec_2-4_Derivative_Chain_Rule_.pptx 8 Bruce Mayer, PE Chabot College Mathematics ChainRule Proof Do On White Board
MTH15_Lec-09_sec_2-4_Derivative_Chain_Rule_.pptx 9 Bruce Mayer, PE Chabot College Mathematics Example Chain Ruling Given: Then Find: SOLUTION Since y is a function of x and x is a function of t, can use Chain Rule By Chain Rule Sub x = 1−3t
MTH15_Lec-09_sec_2-4_Derivative_Chain_Rule_.pptx 10 Bruce Mayer, PE Chabot College Mathematics Example Chain Ruling Thus Then when t = 0 So if Then finally
MTH15_Lec-09_sec_2-4_Derivative_Chain_Rule_.pptx 11 Bruce Mayer, PE Chabot College Mathematics The General Power Rule If f(x) is a differentiable function, and n is a constant, then The General Power Rule can be proved by combining the PolyNomial- Power Rule with the Chain Rule Students should do the proof ThemSelves
MTH15_Lec-09_sec_2-4_Derivative_Chain_Rule_.pptx 12 Bruce Mayer, PE Chabot College Mathematics Example General Pwr Rule Find
MTH15_Lec-09_sec_2-4_Derivative_Chain_Rule_.pptx 13 Bruce Mayer, PE Chabot College Mathematics Example Productivity RoC The productivity, in Units per week, for a sophisticated engineered product is modeled by: Where w ≡ The Prouciton-Line Labor Input in Worker-Days per Unit Produced At what rate is productivity changing when 5 Worker-Days are dedicated to production?
MTH15_Lec-09_sec_2-4_Derivative_Chain_Rule_.pptx 14 Bruce Mayer, PE Chabot College Mathematics Example Productivity RoC SOLUTION Need to find: First Find the general Derivative of the Productivity Function. Note that: P(w) is now in form of [f(x)] n → Use the General Power Rule
MTH15_Lec-09_sec_2-4_Derivative_Chain_Rule_.pptx 15 Bruce Mayer, PE Chabot College Mathematics Example Productivity RoC Employing the General Power Rule
MTH15_Lec-09_sec_2-4_Derivative_Chain_Rule_.pptx 16 Bruce Mayer, PE Chabot College Mathematics Example Productivity RoC So when w = 5 WrkrDays STATE: So when labor is 5 worker- days, productivity is increasing at a rate of 2 units/week per additional worker- day; i.e., 2 units/[week·WrkrDay].
MTH15_Lec-09_sec_2-4_Derivative_Chain_Rule_.pptx 17 Bruce Mayer, PE Chabot College Mathematics Example Productivity RoC
MTH15_Lec-09_sec_2-4_Derivative_Chain_Rule_.pptx 18 Bruce Mayer, PE Chabot College Mathematics MATLAB Code MATLAB Code % Bruce Mayer, PE % MTH-15 06Jul13 % XYfcnGraph6x6BlueGreenBkGndTemplate1306.m % % The Limits xmin = 0; xmax = 8; ymin =0; ymax = 20; % The FUNCTION x = linspace(xmin,xmax,500); y1 = sqrt(3*x.^2+30*x); y2 = 2*(x-5) + 15 % % The ZERO Lines zxh = [xmin xmax]; zyh = [0 0]; zxv = [0 0]; zyv = [ymin ymax]; % % the 6x6 Plot axes; set(gca,'FontSize',12); whitebg([ ]); % Chg Plot BackGround to Blue-Green plot(x,y1, 'LineWidth', 4),axis([xmin xmax ymin ymax]),... grid, xlabel('\fontsize{14}w (WorkerHours)'), ylabel('\fontsize{14}P (Units/Week)'),... title(['\fontsize{16}MTH15 Productivity Sensitivity',]),... annotation('textbox',[ ], 'FitBoxToText', 'on', 'EdgeColor', 'none', 'String', 'XYfcnGraph6x6BlueGreenBkGndTemplate1306.m','FontSize',7) hold on plot(x,y2, '-- m', 5,15, 'd r', 'MarkerSize', 10,'MarkerFaceColor', 'r', 'LineWidth', 2) set(gca,'XTick',[xmin:1:xmax]); set(gca,'YTick',[ymin:2:ymax]) hold off
MTH15_Lec-09_sec_2-4_Derivative_Chain_Rule_.pptx 19 Bruce Mayer, PE Chabot College Mathematics Example Productivity RoC Check Extremes for very large w At Large w, P is LINEAR The Productivity Sensitivity Note that this consist with the Productivity
MTH15_Lec-09_sec_2-4_Derivative_Chain_Rule_.pptx 20 Bruce Mayer, PE Chabot College Mathematics WhiteBoard Work Problems From §2.4 P74 → Machine Depreciation P76 → Specific Power for the Australian Parakeet (the Budgerigar) P80 → Learning Curve Philip E. Hicks, Industrial Engineering and Management: A New Perspective, McGraw Hill Publishing Co., 1994, ISBN-13:
MTH15_Lec-09_sec_2-4_Derivative_Chain_Rule_.pptx 21 Bruce Mayer, PE Chabot College Mathematics All Done for Today Dynamic System Analogy
MTH15_Lec-09_sec_2-4_Derivative_Chain_Rule_.pptx 22 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical Engineer Chabot Mathematics Appendix –
MTH15_Lec-09_sec_2-4_Derivative_Chain_Rule_.pptx 23 Bruce Mayer, PE Chabot College Mathematics
MTH15_Lec-09_sec_2-4_Derivative_Chain_Rule_.pptx 24 Bruce Mayer, PE Chabot College Mathematics
MTH15_Lec-09_sec_2-4_Derivative_Chain_Rule_.pptx 25 Bruce Mayer, PE Chabot College Mathematics
MTH15_Lec-09_sec_2-4_Derivative_Chain_Rule_.pptx 26 Bruce Mayer, PE Chabot College Mathematics
MTH15_Lec-09_sec_2-4_Derivative_Chain_Rule_.pptx 27 Bruce Mayer, PE Chabot College Mathematics ChainRule Proof Reference D. F. Riddle, Calculus and Analytical Geometry, Belmont, CA, Wadsworth Publishing Co., 1974, ISBN X pp This is B. Mayer’s Calculus Text Book Used in 1974 at Cabrillo College –Moral of this story → Do NOT Sell your Technical Reference Books
MTH15_Lec-09_sec_2-4_Derivative_Chain_Rule_.pptx 28 Bruce Mayer, PE Chabot College Mathematics
MTH15_Lec-09_sec_2-4_Derivative_Chain_Rule_.pptx 29 Bruce Mayer, PE Chabot College Mathematics
MTH15_Lec-09_sec_2-4_Derivative_Chain_Rule_.pptx 30 Bruce Mayer, PE Chabot College Mathematics
MTH15_Lec-09_sec_2-4_Derivative_Chain_Rule_.pptx 31 Bruce Mayer, PE Chabot College Mathematics
MTH15_Lec-09_sec_2-4_Derivative_Chain_Rule_.pptx 32 Bruce Mayer, PE Chabot College Mathematics
MTH15_Lec-09_sec_2-4_Derivative_Chain_Rule_.pptx 33 Bruce Mayer, PE Chabot College Mathematics MuPAD Code
MTH15_Lec-09_sec_2-4_Derivative_Chain_Rule_.pptx 34 Bruce Mayer, PE Chabot College Mathematics
MTH15_Lec-09_sec_2-4_Derivative_Chain_Rule_.pptx 35 Bruce Mayer, PE Chabot College Mathematics
MTH15_Lec-09_sec_2-4_Derivative_Chain_Rule_.pptx 36 Bruce Mayer, PE Chabot College Mathematics
MTH15_Lec-09_sec_2-4_Derivative_Chain_Rule_.pptx 37 Bruce Mayer, PE Chabot College Mathematics
MTH15_Lec-09_sec_2-4_Derivative_Chain_Rule_.pptx 38 Bruce Mayer, PE Chabot College Mathematics MuPAD Code Bruce Mayer, PE MTH15 06Jul13 P dEdv := 2*k*(v-35)/v - (k*(v- 35)^2+22)/v^2 dEdvS := Simplify(dEdv) dEdvN := subs(dEdvS, k = 0.074) U := (w-35)^2 expand(U)
MTH15_Lec-09_sec_2-4_Derivative_Chain_Rule_.pptx 39 Bruce Mayer, PE Chabot College Mathematics
MTH15_Lec-09_sec_2-4_Derivative_Chain_Rule_.pptx 40 Bruce Mayer, PE Chabot College Mathematics
MTH15_Lec-09_sec_2-4_Derivative_Chain_Rule_.pptx 41 Bruce Mayer, PE Chabot College Mathematics
MTH15_Lec-09_sec_2-4_Derivative_Chain_Rule_.pptx 42 Bruce Mayer, PE Chabot College Mathematics