SONet: Scientific Observations Network Semtools: Semantic Enhancements for Ecological Data Management Mark Schildhauer, Matt Jones, Shawn Bowers, Huiping.

Slides:



Advertisements
Similar presentations
Dr. Leo Obrst MITRE Information Semantics Information Discovery & Understanding Command & Control Center February 6, 2014February 6, 2014February 6, 2014.
Advertisements

Godfrey Rust, Ontologyx © Rightscom 2004Presentation to DOI Members meeting June 2004 Godfrey Rust, Ontologyx DOI Metadata consultant Metadata interoperability.
Schema Matching and Query Rewriting in Ontology-based Data Integration Zdeňka Linková ICS AS CR Advisor: Július Štuller.
Querying Integrated Observation and Measurement data SONet June 8,
Semantic annotation on the SONet and Semtools projects: Challenges for broad multidisciplinary exchange of observational data Mark Schildhauer, NCEAS/UCSB.
Dan Bunker TraitNet RCN: Foster the curation, discovery, and sharing of ecological trait data.
©Ian Sommerville 2004Software Engineering, 7th edition. Chapter 8 Slide 1 System modeling 2.
SONet (Scientific Observations Network) and OBOE (Extensible Observation Ontology): Mark Schildhauer, Director of Computing National Center for Ecological.
Jennifer A. Dunne Santa Fe Institute Pacific Ecoinformatics & Computational Ecology Lab Rich William, Neo Martinez, et al. Challenges.
Ontology Notes are from:
The RDF meta model: a closer look Basic ideas of the RDF Resource instance descriptions in the RDF format Application-specific RDF schemas Limitations.
A Really Brief Crash Course in Semantic Web Technologies Rocky Dunlap Spencer Rugaber Georgia Tech.
Improving Data Discovery in Metadata Repositories through Semantic Search Chad Berkley 1, Shawn Bowers 2, Matt Jones 1, Mark Schildhauer 1, Josh Madin.
Amarnath Gupta Univ. of California San Diego. An Abstract Question There is no concrete answer …but …
Linking Disparate Datasets of the Earth Sciences with the SemantEco Annotator Session: Managing Ecological Data for Effective Use and Reuse Patrice Seyed.
Using observational data models to enhance data interoperability for integrative biodiversity and ecological research Mark Schildhauer*, Luis Bermudez,
1 Foundations V: Infrastructure and Architecture, Middleware Deborah McGuinness and Peter Fox CSCI Week 9, October 27, 2008.
BiodiversityWorld GRID Workshop NeSC, Edinburgh – 30 June and 1 July 2005 Metadata Agents and Semantic Mediation Mikhaila Burgess Cardiff University.
Ontology Alignment/Matching Prafulla Palwe. Agenda ► Introduction  Being serious about the semantic web  Living with heterogeneity  Heterogeneity problem.
9 th Open Forum on Metadata Registries Harmonization of Terminology, Ontology and Metadata 20th – 22nd March, 2006, Kobe Japan. XMDR Prototype Day: 21.
Observations and Ontologies Achieving semantic interoperability of environmental and ecological data Mark Schildhauer 1, Shawn Bowers 2, Josh Madin 3,
RDF and OWL Developing Semantic Web Services by H. Peter Alesso and Craig F. Smith CMPT 455/826 - Week 6, Day Sept-Dec 2009 – w6d21.
Mapping between SOS standard specifications and INSPIRE legislation. Relationship between SOS and D2.9 Matthes Rieke, Dr. Albert Remke (m.rieke,
Building an Ontology of Semantic Web Techniques Utilizing RDF Schema and OWL 2.0 in Protégé 4.0 Presented by: Naveed Javed Nimat Umar Syed.
1 Foundations V: Infrastructure and Architecture, Middleware Deborah McGuinness TA Weijing Chen Semantic eScience Week 10, November 7, 2011.
1 Foundations V: Infrastructure and Architecture, Middleware Deborah McGuinness and Joanne Luciano With Peter Fox and Li Ding CSCI Week 10, November.
Entity Framework Overview. Entity Framework A set of technologies in ADO.NET that support the development of data-oriented software applications A component.
Patterns and Conventions for Defining OBOE-Compatible Ontologies … Based on OBOE 1.0, June, 2010.
Opportunities for earth science data interoperability through coordinated semantic development, using a shared model for observations and measurements.
Directions in observational data organization: from schemas to ontologies Matthew B. Jones 1 Chad Berkley 1 Shawn Bowers 2 Joshua Madin 3 Mark Schildhauer.
1 Ontology-based Semantic Annotatoin of Process Template for Reuse Yun Lin, Darijus Strasunskas Depart. Of Computer and Information Science Norwegian Univ.
What is Information Modelling (and why do we need it in NEII…)? Dominic Lowe, Bureau of Meteorology, 29 October 2013.
Extensible Markup Language (XML) Extensible Markup Language (XML) is a simple, very flexible text format derived from SGML (ISO 8879).ISO 8879 XML is a.
Development Process and Testing Tools for Content Standards OASIS Symposium: The Meaning of Interoperability May 9, 2006 Simon Frechette, NIST.
11 CORE Architecture Mauro Bruno, Monica Scannapieco, Carlo Vaccari, Giulia Vaste Antonino Virgillito, Diego Zardetto (Istat)
Growing challenges for biodiversity informatics Utility of observational data models Multiple communities within the earth and biological sciences are.
Chad Berkley NCEAS National Center for Ecological Analysis and Synthesis (NCEAS), University of California Santa Barbara Long Term Ecological Research.
Metadata. Generally speaking, metadata are data and information that describe and model data and information For example, a database schema is the metadata.
NERC DataGrid NERC DataGrid Vocabulary Server Use Cases Vocabulary Workshop, RAL, February 25, 2009.
An Aspect of the NSF CDI InitiativeNSF CDI: Cyber-Enabled Discovery and Innovation.
Subgroup 1 Collect interoperability requirements Define common, unified data model Engage tool & data providers, data consumers Subgroup 2 Identify and.
Enabling Access to Sound Archives through Integration, Enrichment and Retrieval WP2 – Media Semantics and Ontologies.
Coastal Atlas Interoperability - Ontologies (Advanced topics that we did not get to in detail) Luis Bermudez Stephanie Watson Marine Metadata Interoperability.
©Ferenc Vajda 1 Semantic Grid Ferenc Vajda Computer and Automation Research Institute Hungarian Academy of Sciences.
Using Several Ontologies for Describing Audio-Visual Documents: A Case Study in the Medical Domain Sunday 29 th of May, 2005 Antoine Isaac 1 & Raphaël.
SKOS. Ontologies Metadata –Resources marked-up with descriptions of their content. No good unless everyone speaks the same language; Terminologies –Provide.
11 CORE Architecture Mauro Bruno, Monica Scannapieco, Carlo Vaccari, Giulia Vaste Antonino Virgillito, Diego Zardetto (Istat)
Introduction to the Semantic Web and Linked Data Module 1 - Unit 2 The Semantic Web and Linked Data Concepts 1-1 Library of Congress BIBFRAME Pilot Training.
Metadata Common Vocabulary a journey from a glossary to an ontology of statistical metadata, and back Sérgio Bacelar
Shridhar Bhalerao CMSC 601 Finding Implicit Relations in the Semantic Web.
Methods of Semantic Clarification (from Pennington, Databits, Spring 2006) DefinitionSynonymsClassification “is a” Propertiesother Keywords DictionaryX.
OBOE Model Changes SONet Meeting June 7-9, Motivation for Changes Remove redundancy in the model –Mainly in Dimension (characteristics) Make it.
Ontology domain & modeling extensions. Modeling enhancements: overview Enhancements: – Increased expressivity in ontology – Increased expressivity in.
Context Observation Measurement Relationship Entity Characteristic Value Standard hasContextRelationship ofEntity hasValue ofCharacteristic usesStandard.
Manufacturing Systems Integration Division Development Process and Testing Tools for Content Standards Simon Frechette National Institute of Standards.
A Portrait of the Semantic Web in Action Jeff Heflin and James Hendler IEEE Intelligent Systems December 6, 2010 Hyewon Lim.
Human-Aware Sensor Network Ontology (HASNetO): Semantic Support for Empirical Data Collection Paulo Pinheiro 1, Deborah McGuinness 1, Henrique Santos 1,2.
OBOE v.s. OGC O&M SONet June 8,2010. OBOE Entity Context Characteristic Measurement Observation Standard hasCharacteristic hasMeasurement ofEntity hasContext.
CIMA and Semantic Interoperability for Networked Instruments and Sensors Donald F. (Rick) McMullen Pervasive Technology Labs at Indiana University
Semantic Interoperability in GIS N. L. Sarda Suman Somavarapu.
Versatile Information Systems, Inc International Semantic Web Conference An Application of Semantic Web Technologies to Situation.
Comparative Data Analysis Ontology (CDAO)
Harmonizing Measurements for Marine Biodiversity Observation Networks
Improving Data Discovery Through Semantic Search
Lecture #11: Ontology Engineering Dr. Bhavani Thuraisingham
SONet: A Community-Driven Scientific Observations Network to achieve Semantic Interoperability of Environmental and Ecological Data Mark Schildhauer1,
Existing Designs and Prototypes at RPI
Session 2: Metadata and Catalogues
Annotation Examples (12/18/2009)
Measurement Semantics: “MEASEM”
Presentation transcript:

SONet: Scientific Observations Network Semtools: Semantic Enhancements for Ecological Data Management Mark Schildhauer, Matt Jones, Shawn Bowers, Huiping Cao

Outline Project overview Observational data models (SONet) OBOE re-factored O&M EQ SONet core - domain ontologies Semantic tools for observational data (Semtools) Semantic annotation OM Query language Querying annotated observational metadata and data

Challenges Mark and Matt fill in …

Our Approach The SONet Project -Define a core observational model (based on OBOE, O&M, and others) … progress made on OBOE/O&M alignment -Identify and develop domain-specific vocabularies for describing observational data semantics -Define a set of scientific use cases for data interoperability -Develop a set of interoperability “demonstration prototypes” The Semtools Project -Incorporate OBOE and semantic annotations into existing Metacat and Morpho metadata tools -Focus on ecology data and use cases

WeightMass Unit Biomass usesStandard Gram is-a Bio.EntityTree Leaf LitterTree LeafWet WeightDry Weight Observation Measurement SiteSpeciesIndMass GCE6Picea Rubens GCE6Picea Rubens GCE7Picea Rubens ………… Data Structural Meatadata Mass hasMeasurement OBOE Semantic Annotation Domain-Specific Ontology is-a has-part hasCharac teristic is-a part-of is-a ofEntity usesStandard ofCharacteristic

Observational data models OBOE 1.0 O&M (ISO) EQ SONet Domain Ontologies Plant Traits SBC Ongoing

OBOE Core 1.0 Extensible Observation Ontology (OBOE) [1] 7 Entity Characteristic Observation Measurement Protocol Standard hasMeasurement ofCharacteristic usesProtocol usesStandard ofEntity hasContext 1..1 * * * * * * hasValue 1..1 * *

OBOE re-factored (cont.) Shawn adds more (2-3 slides) on OBOE …

O&M ([2]) 9 Feature – Abstraction of real world phenomena (Def. 4.5) – E.g., Tree Feature type – Class of features having common characteristics (Def. 4.6) Property – Facet or attribute of an object referenced by name (Def. 4.14) – E.g., Height Property-type – Characteristic of a feature type (Def. 4.15) Feature Property carrierOfCharacteristic

Feature Property OM_Observation observedProperty featureOfInterest carrierOfCharacteristic O O&M (Cont.) Observation –Act of observing a property (Def. 4.10) Measurement –Set of operations having the object of determining the value of a quantity (Def. 4.9) OM_Observation –An instance of feature type

Feature Property OM_Observation Result hasResult Procedure usesProcedure carrierOfCharacteristic observedPro perty featureOfInterest O&M (cont.) Observation procedure – Method, algorithm or instrument, or system of these which may be used in making an observation (Def. 4.11) – The base class OM_Process Observation result – Estimate of the value of a property determined through a known procedure. Any type

Feature ObservationContext Property OM_Observation Result relatedObservation hasResult Procedure usesProcedure ObservationContext Some observations depend on other observations to provide context in understanding the result. (Sec ) Link a OM_Observation to another OM_Observation, with the role name relatedObservation for the target carrierOfCharacteristic observedPro perty featureOfInterest O&M (cont.)

Entity Feature CharacteristicProperty Observation Measurement OM_Observation Protocol Procedure Result Standard Entity hasContextObservationContext Entity CharacteristicMeasurement Observation Standard hasMeasurement ofEntity Protocol Feature ObservationContex Property OM_Observation Result carrierOfCharacteristic observedProper ty featureOfInterest relatedObservation hasResult Procedure usesProcedure 13 hasValue usesProtocolusesStandard ofCharacteristic hasContext

EQ ([4]) Entity – Describes some object in the real world. E.g., eye Quality – Describes an entity's attribute and its attribute value. E.g., color = red, means eye’s color is red. Character – Composed of Entity and Quality attributes to represent the meaning of which entity's which attribute. E.g., eye's color. Character state – Quality value. E.g., “red” to represent eye’s color is red).

Comparison OBOE re-facoredO&MEQ EntityFeatureEntity CharacteristicPropertyQuality attribute Observation OM_Observation MeasurementQuality value or Character state ProtocolProcedure Standard + ResultResult hasContextObservationContext

SONet core - domain ontology: trait Trait group: Centre d'Écologie Fonctionnelle et Évolutive (CÉFÉ) [5]

SONet core -domain ontology: SBC Group: Santa Barbara Coastal (SBC) Lont Term Ecological Research (LTER) [6]

Plant – iPlant group ([7]) PATO ([8]) – Phenotypic Quality Ontology – Automatic tool to convert PATO to be compatible with SONet core model SONet core -domain ontology: ongoing

How to use SONet core model? SONet-core Morpho data annotation tool to generate data instances for you automatically OM query language OM query framework for data discovery O&M Write your own xml file to contain the observation and measurement data Write Schematron [3] file to validate whether the data xml file No tool report! 19

Tools Morpho data annotation tool to generate data instances for you automatically Observation and Measurement (OM) query language Framework for querying annotated observational data 20

Semantic Annotation

OM Query example Tree[Height > 5 Meter] -Return datasets that have at least one Tree observation containing a Height measurement with a value greater than 5 Meters Tree[Height > 5 Meter], Soil[Acidity >= 7 pH] -Return datasets that contain at least one Tree observation (having a measurement where the Height was greater than 5) and at least one Soil observation (having an Acidity measurement of 7 or greater) 22

OM Query Example (cont.) Tree[Height > 5 Meter] -> Soil[Acidity >= 7pH] -Incorporates context via the "->” (arrow) symbol, which can be read as "contextualized by" or "has context" -Returns datasets that contain at least one Tree observation (with the corresponding height value) where the observation was taken within the context of a Soil observation (with the corresponding acidity value) 23

Query framework Annotation 1Annotation 2 Annotation 3 Annotation 4 File 1 File 2File 3File 4 Offline data processing Result Q1Result Q2 … …. OBOE-aware DB … 24 OBOE domain model Annotation interface Query 1Query 2 … …. Online query engine

Offline data processing Annotation as a bridge … Annotation 1Annotation 2 Annotation 3 Annotation 4 File 1 File 2File 3File 4 Measurement type table Observation Type table Entity type table Context type table Map 25 OBOE-aware DB

Annotation as a bridge … Annotation 1Annotation 2 Annotation 3 Annotation 4 File 1 File 2File 3File 4 Measurement type table (for ann1, 2, …) Observation type table (for ann1, 2, …) Entity type table (for ann1, 2, …) Context type table (for ann1, 2, …) Map (for ann1, 2, …) 26 OBOE-aware DB

Offline data processing (raw data loading) Observation type table (for ann1, 2, …) Entity type table (for ann1, 2, …) Context type table (for ann1, 2, …) Map (for ann1, 2, …) Measurement type table (for ann1, 2, …) Raw data loading … Annotation 1Annotation 2 Annotation 3 Annotation 4 File 1 File 2File 3File 4 Table 4 Table 3 Table 2 Table 1 … 27 OBOE-aware DB

Offline data processing (data materialization) Measurement table Observation table Entity table Context table Measurement type table (for ann1, 2, …) Observation type table (for ann1, 2, …) Entity type table (for ann1, 2, …) Context type table (for ann1, 2, …) Map (for ann1, 2, …) Table 4 Table 3 Table 2 Table 1 … Data materialization … Annotation 1Annotation 2 Annotation 3 Annotation 4 File 1 File 2File 3File 4 28 OBOE-aware DB

Measurement Table (for file 1, 2, …) Observation table (for file 1, 2, …) Entity table (for file 1, 2, …) Context table (for file 1, 2, …) Measurement type table (for ann1, 2, …) Observation type table (for ann1, 2, …) Entity type table (for ann1, 2, …) Context type table (for ann1, 2, …) Map (for ann1, 2, …) Table 4 Table 3 Table 2 Table 1 … Data materialization … Annotation 1Annotation 2 Annotation 3 Annotation 4 File 1 File 2File 3File 4 29 OBOE-aware DB

Measurement type table (for ann1, 2, …) Observation type table (for ann1, 2, …) Entity type table (for ann1, 2, …) Context type table (for ann1, 2, …) Map (for ann1, 2, …) Table 4 Table 3 Table 2 Table 1 … Query strategy 1 Online query engine (query re-writing over raw data) 30 Measurement Table (for file 1, 2, …) Observation table (for file 1, 2, …) Entity table (for file 1, 2, …) Context table (for file 1, 2, …) OBOE-aware DB

Measurement type table (for ann1, 2, …) Observation type table (for ann1, 2, …) Entity type table (for ann1, 2, …) Context type table (for ann1, 2, …) Map (for ann1, 2, …) Table 4 Table 3 Table 2 Table 1 … Query strategy 2 Online query engine (query re-writing over materialized data) 31 Measurement Table (for file 1, 2, …) Observation table (for file 1, 2, …) Entity table (for file 1, 2, …) Context table (for file 1, 2, …) OBOE-aware DB

Measurement type table (for ann1, 2, …) Observation type table (for ann1, 2, …) Entity type table (for ann1, 2, …) Context type table (for ann1, 2, …) Map (for ann1, 2, …) Table 4 Table 3 Table 2 Table 1 … Query strategy n?? Online query engine 32 Measurement Table (for file 1, 2, …) Observation table (for file 1, 2, …) Entity table (for file 1, 2, …) Context table (for file 1, 2, …) Other materialization/de- normalization?? RDF triple store? OBOE-aware DB

Ontology Editing Tools Protégé plug-in -For creating and editing OBOE-compatible ontologies -Form-based UI -Generates “low-level” OWL constraints/axioms

References [1] Shawn Bowers and Joshua S. Madin and Mark P. Schildhauer, A Conceptual Modeling Framework for Expressing Observational Data Semantic. In ER 2008, [2] OpenGIS observations and measurements encoding standard (O&M): [3] Schematron ISO standard: [4] EQ: [5] CECF: [6] SBC LTER: [7] iPlant: [8] PATO: 34