Christian Buck, MPIK Heidelberg for the Double Chooz Collaboration LAUNCH March 23rd, 2007 The Double Chooz experiment
Outline Motivation The Double Chooz Concept and Design Scintillator development at MPIK Summary
Why Double Chooz ? Improved knowledge of mixing matrix Θ 13 controls 3 flavor effects (e.g. CP violation only for Θ 13 > 0) Discovery potential: models often close to experimental bound Complementarity to beam experiments - Degeneracies + parameter correlations - Optimize future experiments Discrimination power for normal hierarchy in 0νββ depends on Θ 13 Δm sol 2 ~ 8∙10 -5 eV 2, sin 2 (2Θ 12 ) ~ 0.86 Δm atm 2 ~ 2.5∙10 -3 eV 2, sin 2 (2Θ 23 ) ~ 1 ν2ν2 Δm atm 2 Δm sol 2 ν1ν1 ν3ν3 sin 2 Θ 13 sin 2 Θ 23 sin 2 Θ 12 νeνe νμνμ ντντ
Interest of International Atomic Energy Agency (IAEA) in ν e detection -Monitoring of single reactors -Monitoring of countries Intensity and shape of spectrum depend on isotopic composition Pu content! Use Double Chooz near detector as prototype for reactor monitoring Thermal power (1% ?) Non-proliferation
Current proposals December 2002: 1st European meeting, MPIK April 2003 – February 2005: 4 int. workshops in U.S., Germany, Japan and Brazil 1st Double Chooz Meeting: Nov 2003 Angra Double-Chooz Kaska Daya bay RENO
Double Chooz collaboration Spokesman: H. de Kerret (APC) France: CEA/Dapnia Saclay, APC, Subatech (Nantes) Germany: MPIK Heidelberg, TU München, EKU Tübingen, Universität Hamburg, RWTH Aachen Italy: LNGS (Gran Sasso) Russia: RAS, Kurchatov Institute (Moscow) USA: Alabama, ANL, Chicago, Drexel, Kansas State, LLNL, LSU, Notre Dame, Tennessee Spain: CIEMAT Japan: HIT, Kobe, MUE, Niigata, Tohoku, TGU, TIT, TMU England: University of Oxford
The Double Chooz concept ν ν ν ν ν ν ν ν 1051 m 280 m Site location: France D near D far
The labs Far detector (300 m w.e., 1.05 km)Near detector (75 m w.e., 280 m) Δm 2 atm = 2.8·10 -3 eV 2 (MINOS best fit) Constant flux ratios
Improving Chooz 0.3 %1.5 %Det.eff. < 0.6%2.7 %Σ system. 0.4%2.8%Statistical 0.2 %0.8 %# protons <0.1 %0.7 %Power <0.1 %0.6 %E/fission <0.1 %1.9 %Flux, σ DCChoozerror CHOOZ limit sin 2 (2θ 13 ) < 0.12 – 0.20 R = 1.01 2.8%(stat) 2.7%(syst) Reactor Detector Δm 2 (eV) 2 sin 2 (2Θ)
Sensitivity 2008 Sensitivity 2008 – 2013 (near detector starts 16 months after far) for m 2 atm = 2.8·10 -3 eV 2
Detector design TARGET: (th = 2,3m) - Acrylic vessel (th = 8mm) - 10,3 m 3 LS (1 g/l Gd) γ-catcher: (th = 0,55m) -Acrylic vessel (th = 12mm) - 22,6 m 3 LS Buffer: (th = 1,05m) -Steel vessel (th = 3 mm) -114 m 3 mineral oil Inner veto: (th = 0,5m) -Steel vessel th = 10 mm) -~80 m 3 LS SHIELDING (th = 17 cm) - Steel 7m
Neutrino signal n e p 511 keV e+e+ ~ 8 MeV Gd Target: Gd-loaded liquid scintillator Events/200 KeV/3 years sin 2 (2 13 )=0.04 sin 2 (2 13 )=0.1 sin 2 (2 13 )=0.2 Energy [MeV] Neutrino rates: - far: ~70/day - near: ~1000/day
Correlated backgrounds n ~ 8 MeV n deposits energy Gd Fast neutrons Chooz rate: ~1/day Double Chooz simulation: Far: N b < 0.6/day (90% CL) Near: N b ~ 3.3/day (90% CL) β-n-cascades (spallation products: 9 Li, 11 Li, 8 He) Expected rate: Far: 1.4/day, Near: 9/day Long-lived
Mockup Goal: - Find technical solutions - Define interfaces - Material compatiblity - Test filling procedure Volumes: liter Target liter Gamma Catcher liter Buffer Match scintillator properties: - Densities (1 % in DC) - Light yield
Filling system Simultaneous filling Air driven pumps Tubing and valves PFA Filling 2005 MPIK-HD
Mockup results Gd-concentration unchanged Optical properties stable
Metal loaded scintillators Development at MPIK since 2000 (C.Buck, F.X.Hartmann, D.Motta, T.Lasserre, S.Schönert, U.Schwan) Wide interest in different fields: -Solar neutrino physics (In, Yb,…) -Reactors experiments (Gd) -Geo-neutrinos (Gd) -0νββ-decay ( 150 Nd)
Scintillator development at MPIK Metal-β-diketonates: R1R1 3+ M R2R2 O O O O O O HC - C-C- H C-C- H R1R1 R1R1 R2R2 R2R2 How to dissolve metal in organic scintillator? Method 1: Organometallic compound Requirements: solubility no light quenching optical transparency radiopurity low reactivity (stability!) Method 2: Carboxylate system stabilized by pH (since 2000)
Attenuation length / stability Stability tests up to 3 years Tests of concentrates Temperature tests Cross check in Saclay Measured by UV/Vis 10 cm cells Absorption + Scattering! No fluors: > 10 m in ROI ROI
Scintillator stability Palo Verde: A.G.Piepke, S.W.Moser, V.M.Novikov NIM A 342 (1999) Chooz: Time variation fit of attenuation length: Parameter v Chooz: (4.2 ± 0.4)∙10 -3 /d * BDK-system: ≤ 7.5∙10 -5 /d * Chooz Coll., Eur. Phys. J. C27, (2003) [v = (1.5 – 2.8)·10 -3 /d)]
Scintillator system Excitation by ionizing particle PMT Metal Secondary wavel. shifter Fluorsolvent
Gd complex Approach: Gd-β-diketone Purification by sublimation Full scale production started! 8· · < 2.4· Conc. [g/g] < 0.03A/det. [Bq] Th 0.005< A/kg [Bq] KU GeMPI at LNGS (M.Laubenstein)
Scintillator solvent PXE/dodecane mixture (20/80 Vol): Optimized ratio - PXE improves light yield - Dodecane improves material compatibility + number of H Column purification High flash point, low toxicity Solvents used in KamLand (Dodecane), Borexino (PXE in CTF) Backup Linear alkylbenzene
Fluor choice Primary fluor properties: Light yield Emission spectrum Energy transfer parameters Transparency Radiopurity Scintillator emission spectrum
Energy transfer model M DA * excitation M M M O C H In O O O O O Me. C.Buck, F.X.Hartmann, D.Motta, S.Schönert, Chem.Phys.Lett.435 (2007) 252 – 256 Developed for Indium system
Scintillator Summary 2000 – 2003: Development metal loaded scintillator (In, Yb, Nd, Gd) 2003: First tests Gd-loaded scintillators –Gd(acac) 3 scintillator –pH controlled carboxylate (TMHA) scintillator 2004: Optimization synthesis 2005: Double Chooz mockup 2006: Outsourcing of Gd-BDK production –Successful sublimation at company –First radiopurity measurements
Summer 2006: New division 3 x 24m 3 Iso-containersLarge scale production Gd-material Scintillator building 60 m³ liquids
Scintillator hall Dec 06Jan 07 Feb 07Mar 07
Summary Double Chooz searches for the neutrino mixing angle θ 13 - Sensitivity: sin 2 (2Θ 13 ) < (90% CL) (Chooz bound sin 2 (2Θ 13 ) < 0.2) - Start data taking: 2008 Main hardware contribution of MPIK: -Development + production target Gd-scintillator (10.3 m³) -Tuning + production of γ-catcher scintillator (22 m³) -Design and construction scintillator mixing system Status -Major components ordered -Construction of scintillator hall