1 1 Slide © 2007 Thomson South-Western. All Rights Reserved Chapter 13 Multiple Regression n Multiple Regression Model n Least Squares Method n Multiple.

Slides:



Advertisements
Similar presentations
Chapter 12 Simple Linear Regression
Advertisements

Pengujian Parameter Regresi Ganda Pertemuan 22 Matakuliah: L0104/Statistika Psikologi Tahun: 2008.
Pengujian Parameter Regresi Pertemuan 26 Matakuliah: I0174 – Analisis Regresi Tahun: Ganjil 2007/2008.
6-1 Introduction To Empirical Models 6-1 Introduction To Empirical Models.
Chapter 12 Simple Linear Regression
1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Chapter 12 Simple Regression
1 1 Slide 統計學 Spring 2004 授課教師:統計系余清祥 日期: 2004 年 5 月 4 日 第十二週:複迴歸.
Irwin/McGraw-Hill © The McGraw-Hill Companies, Inc., 2000 LIND MASON MARCHAL 1-1 Chapter Twelve Multiple Regression and Correlation Analysis GOALS When.
Chapter 11 Multiple Regression.
Simple Linear Regression Analysis
1 1 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Ch. 14: The Multiple Regression Model building
1 1 Slide © 2003 South-Western/Thomson Learning™ Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
Simple Linear Regression Analysis
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS & Updated by SPIROS VELIANITIS.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS & Updated by SPIROS VELIANITIS.
Introduction to Linear Regression and Correlation Analysis
Chapter 13: Inference in Regression
Regression Method.
Chapter 12 Multiple Regression and Model Building.
1 1 Slide © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2005 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS St. Edward’s University Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 1 Slide Simple Linear Regression Part A n Simple Linear Regression Model n Least Squares Method n Coefficient of Determination n Model Assumptions n.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Chapter 11 Inferences About Population Variances n Inference about a Population Variance n.
Econ 3790: Business and Economics Statistics
1 1 Slide © 2016 Cengage Learning. All Rights Reserved. The equation that describes how the dependent variable y is related to the independent variables.
1 1 Slide © 2005 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS St. Edward’s University Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 1 Slide © 2003 Thomson/South-Western Chapter 13 Multiple Regression n Multiple Regression Model n Least Squares Method n Multiple Coefficient of Determination.
1 1 Slide © 2007 Thomson South-Western. All Rights Reserved OPIM 303-Lecture #9 Jose M. Cruz Assistant Professor.
1 1 Slide © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide Multiple Regression n Multiple Regression Model n Least Squares Method n Multiple Coefficient of Determination n Model Assumptions n Testing.
1 1 Slide © 2004 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS St. Edward’s University Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
Econ 3790: Business and Economics Statistics Instructor: Yogesh Uppal
QMS 6351 Statistics and Research Methods Regression Analysis: Testing for Significance Chapter 14 ( ) Chapter 15 (15.5) Prof. Vera Adamchik.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Chapter 15 Multiple Regression n Multiple Regression Model n Least Squares Method n Multiple.
INTRODUCTORY LINEAR REGRESSION SIMPLE LINEAR REGRESSION - Curve fitting - Inferences about estimated parameter - Adequacy of the models - Linear.
1 1 Slide Simple Linear Regression Coefficient of Determination Chapter 14 BA 303 – Spring 2011.
1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 Chapter 12 Simple Linear Regression. 2 Chapter Outline  Simple Linear Regression Model  Least Squares Method  Coefficient of Determination  Model.
Go to Table of Content Single Variable Regression Farrokh Alemi, Ph.D. Kashif Haqqi M.D.
Multiple Regression and Model Building Chapter 15 Copyright © 2014 by The McGraw-Hill Companies, Inc. All rights reserved.McGraw-Hill/Irwin.
Chapter 4 Linear Regression 1. Introduction Managerial decisions are often based on the relationship between two or more variables. For example, after.
1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
14- 1 Chapter Fourteen McGraw-Hill/Irwin © 2006 The McGraw-Hill Companies, Inc., All Rights Reserved.
Chapter 13 Multiple Regression
1 1 Slide © 2003 South-Western/Thomson Learning™ Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 1 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Copyright © 2011 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Simple Linear Regression Analysis Chapter 13.
Chapter 12 Simple Linear Regression n Simple Linear Regression Model n Least Squares Method n Coefficient of Determination n Model Assumptions n Testing.
1 1 Slide The Simple Linear Regression Model n Simple Linear Regression Model y =  0 +  1 x +  n Simple Linear Regression Equation E( y ) =  0 + 
Business Research Methods
1 1 Slide © 2011 Cengage Learning Assumptions About the Error Term  1. The error  is a random variable with mean of zero. 2. The variance of , denoted.
Copyright © 2011 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Multiple Regression Chapter 14.
INTRODUCTION TO MULTIPLE REGRESSION MULTIPLE REGRESSION MODEL 11.2 MULTIPLE COEFFICIENT OF DETERMINATION 11.3 MODEL ASSUMPTIONS 11.4 TEST OF SIGNIFICANCE.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
Lecture 11: Simple Linear Regression
Essentials of Modern Business Statistics (7e)
Chapter 13 Created by Bethany Stubbe and Stephan Kogitz.
John Loucks St. Edward’s University . SLIDES . BY.
Multiple Regression and Model Building
Statistics for Business and Economics (13e)
Quantitative Methods Simple Regression.
Slides by JOHN LOUCKS St. Edward’s University.
Business Statistics Multiple Regression This lecture flows well with
Chapter Fourteen McGraw-Hill/Irwin
St. Edward’s University
Presentation transcript:

1 1 Slide © 2007 Thomson South-Western. All Rights Reserved Chapter 13 Multiple Regression n Multiple Regression Model n Least Squares Method n Multiple Coefficient of Determination n Model Assumptions n Testing for Significance n Using the Estimated Regression Equation for Estimation and Prediction for Estimation and Prediction n Qualitative Independent Variables n Residual Analysis

2 2 Slide © 2007 Thomson South-Western. All Rights Reserved The equation that describes how the dependent variable y is related to the independent variables x 1, x 2,... x p and an error term is called the multiple regression model. Multiple Regression Model y =  0 +  1 x 1 +  2 x  p x p +  where:  0,  1,  2,...,  p are the parameters, and  is a random variable called the error term

3 3 Slide © 2007 Thomson South-Western. All Rights Reserved The equation that describes how the mean value of y is related to x 1, x 2,... x p is called the multiple regression equation. Multiple Regression Equation E ( y ) =  0 +  1 x 1 +  2 x  p x p

4 4 Slide © 2007 Thomson South-Western. All Rights Reserved A simple random sample is used to compute sample statistics b 0, b 1, b 2,..., b p that are used as the point estimators of the parameters  0,  1,  2,...,  p. Estimated Multiple Regression Equation ^ y = b 0 + b 1 x 1 + b 2 x b p x p The estimated multiple regression equation is:

5 5 Slide © 2007 Thomson South-Western. All Rights Reserved Estimation Process Multiple Regression Model E ( y ) =  0 +  1 x 1 +  2 x  p x p +  Multiple Regression Equation E ( y ) =  0 +  1 x 1 +  2 x  p x p Unknown parameters are  0,  1,  2,...,  p Sample Data: x 1 x 2... x p y.... Estimated Multiple Regression Equation Sample statistics are b 0, b 1, b 2,..., b p b 0, b 1, b 2,..., b p b 0, b 1, b 2,..., b p provide estimates of  0,  1,  2,...,  p

6 6 Slide © 2007 Thomson South-Western. All Rights Reserved Least Squares Method n Least Squares Criterion n Computation of Coefficient Values The formulas for the regression coefficients The formulas for the regression coefficients b 0, b 1, b 2,... b p involve the use of matrix algebra. We will rely on computer software packages to perform the calculations.

7 7 Slide © 2007 Thomson South-Western. All Rights Reserved Interpreting the Coefficients In multiple regression analysis, we interpret each In multiple regression analysis, we interpret each regression coefficient as follows: regression coefficient as follows: b i represents an estimate of the change in y b i represents an estimate of the change in y corresponding to a 1-unit increase in x i when all corresponding to a 1-unit increase in x i when all other independent variables are held constant. other independent variables are held constant.

8 8 Slide © 2007 Thomson South-Western. All Rights Reserved Multiple Coefficient of Determination n Relationship Among SST, SSR, SSE where: SST = total sum of squares SST = total sum of squares SSR = sum of squares due to regression SSR = sum of squares due to regression SSE = sum of squares due to error SSE = sum of squares due to error SST = SSR + SSE

9 9 Slide © 2007 Thomson South-Western. All Rights Reserved Multiple Coefficient of Determination R 2 = SSR/SST Adjusted Multiple Coefficient of Determination

10 Slide © 2007 Thomson South-Western. All Rights Reserved The variance of , denoted by  2, is the same for all The variance of , denoted by  2, is the same for all values of the independent variables. values of the independent variables. The variance of , denoted by  2, is the same for all The variance of , denoted by  2, is the same for all values of the independent variables. values of the independent variables. The error  is a normally distributed random variable The error  is a normally distributed random variable reflecting the deviation between the y value and the reflecting the deviation between the y value and the expected value of y given by  0 +  1 x 1 +  2 x  p x p. expected value of y given by  0 +  1 x 1 +  2 x  p x p. The error  is a normally distributed random variable The error  is a normally distributed random variable reflecting the deviation between the y value and the reflecting the deviation between the y value and the expected value of y given by  0 +  1 x 1 +  2 x  p x p. expected value of y given by  0 +  1 x 1 +  2 x  p x p. Assumptions About the Error Term  The error  is a random variable with mean of zero. The error  is a random variable with mean of zero. The values of  are independent. The values of  are independent.

11 Slide © 2007 Thomson South-Western. All Rights Reserved In simple linear regression, the F and t tests provide In simple linear regression, the F and t tests provide the same conclusion. the same conclusion. In simple linear regression, the F and t tests provide In simple linear regression, the F and t tests provide the same conclusion. the same conclusion. Testing for Significance In multiple regression, the F and t tests have different In multiple regression, the F and t tests have different purposes. purposes. In multiple regression, the F and t tests have different In multiple regression, the F and t tests have different purposes. purposes.

12 Slide © 2007 Thomson South-Western. All Rights Reserved Testing for Significance: F Test The F test is referred to as the test for overall The F test is referred to as the test for overall significance. significance. The F test is referred to as the test for overall The F test is referred to as the test for overall significance. significance. The F test is used to determine whether a significant The F test is used to determine whether a significant relationship exists between the dependent variable relationship exists between the dependent variable and the set of all the independent variables. and the set of all the independent variables. The F test is used to determine whether a significant The F test is used to determine whether a significant relationship exists between the dependent variable relationship exists between the dependent variable and the set of all the independent variables. and the set of all the independent variables.

13 Slide © 2007 Thomson South-Western. All Rights Reserved A separate t test is conducted for each of the A separate t test is conducted for each of the independent variables in the model. independent variables in the model. A separate t test is conducted for each of the A separate t test is conducted for each of the independent variables in the model. independent variables in the model. If the F test shows an overall significance, the t test is If the F test shows an overall significance, the t test is used to determine whether each of the individual used to determine whether each of the individual independent variables is significant. independent variables is significant. If the F test shows an overall significance, the t test is If the F test shows an overall significance, the t test is used to determine whether each of the individual used to determine whether each of the individual independent variables is significant. independent variables is significant. Testing for Significance: t Test We refer to each of these t tests as a test for individual We refer to each of these t tests as a test for individual significance. significance. We refer to each of these t tests as a test for individual We refer to each of these t tests as a test for individual significance. significance.

14 Slide © 2007 Thomson South-Western. All Rights Reserved Testing for Significance: F Test Hypotheses Rejection Rule Test Statistics H 0 :  1 =  2 =... =  p = 0 H 0 :  1 =  2 =... =  p = 0 H a : One or more of the parameters H a : One or more of the parameters is not equal to zero. is not equal to zero. F = MSR/MSE Reject H 0 if p -value F   where F  is based on an F distribution with p d.f. in the numerator and n - p - 1 d.f. in the denominator.

15 Slide © 2007 Thomson South-Western. All Rights Reserved Testing for Significance: t Test Hypotheses Rejection Rule Test Statistics Reject H 0 if p -value <  or if t t   where t  is based on a t distribution with n - p - 1 degrees of freedom.

16 Slide © 2007 Thomson South-Western. All Rights Reserved Testing for Significance: Multicollinearity The term multicollinearity refers to the correlation The term multicollinearity refers to the correlation among the independent variables. among the independent variables. The term multicollinearity refers to the correlation The term multicollinearity refers to the correlation among the independent variables. among the independent variables. When the independent variables are highly correlated When the independent variables are highly correlated it is not possible to determine the separate effect of it is not possible to determine the separate effect of any particular independent variable on the dependent variable. When the independent variables are highly correlated When the independent variables are highly correlated it is not possible to determine the separate effect of it is not possible to determine the separate effect of any particular independent variable on the dependent variable.

17 Slide © 2007 Thomson South-Western. All Rights Reserved Testing for Significance: Multicollinearity Every attempt should be made to avoid including Every attempt should be made to avoid including independent variables that are highly correlated. independent variables that are highly correlated. Every attempt should be made to avoid including Every attempt should be made to avoid including independent variables that are highly correlated. independent variables that are highly correlated. If the estimated regression equation is to be used only If the estimated regression equation is to be used only for predictive purposes, multicollinearity is usually for predictive purposes, multicollinearity is usually not a serious problem. not a serious problem. If the estimated regression equation is to be used only If the estimated regression equation is to be used only for predictive purposes, multicollinearity is usually for predictive purposes, multicollinearity is usually not a serious problem. not a serious problem.

18 Slide © 2007 Thomson South-Western. All Rights Reserved Using the Estimated Regression Equation for Estimation and Prediction The procedures for estimating the mean value of y The procedures for estimating the mean value of y and predicting an individual value of y in multiple and predicting an individual value of y in multiple regression are similar to those in simple regression. regression are similar to those in simple regression. The procedures for estimating the mean value of y The procedures for estimating the mean value of y and predicting an individual value of y in multiple and predicting an individual value of y in multiple regression are similar to those in simple regression. regression are similar to those in simple regression. We substitute the given values of x 1, x 2,..., x p into We substitute the given values of x 1, x 2,..., x p into the estimated regression equation and use the the estimated regression equation and use the corresponding value of y as the point estimate. corresponding value of y as the point estimate. We substitute the given values of x 1, x 2,..., x p into We substitute the given values of x 1, x 2,..., x p into the estimated regression equation and use the the estimated regression equation and use the corresponding value of y as the point estimate. corresponding value of y as the point estimate.

19 Slide © 2007 Thomson South-Western. All Rights Reserved Using the Estimated Regression Equation for Estimation and Prediction Software packages for multiple regression will often Software packages for multiple regression will often provide these interval estimates. provide these interval estimates. Software packages for multiple regression will often Software packages for multiple regression will often provide these interval estimates. provide these interval estimates. The formulas required to develop interval estimates The formulas required to develop interval estimates for the mean value of y and for an individual value for the mean value of y and for an individual value of y are beyond the scope of the textbook. of y are beyond the scope of the textbook. The formulas required to develop interval estimates The formulas required to develop interval estimates for the mean value of y and for an individual value for the mean value of y and for an individual value of y are beyond the scope of the textbook. of y are beyond the scope of the textbook.^^

20 Slide © 2007 Thomson South-Western. All Rights Reserved In many situations we must work with qualitative In many situations we must work with qualitative independent variables such as gender (male, female), independent variables such as gender (male, female), method of payment (cash, check, credit card), etc. method of payment (cash, check, credit card), etc. In many situations we must work with qualitative In many situations we must work with qualitative independent variables such as gender (male, female), independent variables such as gender (male, female), method of payment (cash, check, credit card), etc. method of payment (cash, check, credit card), etc. For example, x 2 might represent gender where x 2 = 0 For example, x 2 might represent gender where x 2 = 0 indicates male and x 2 = 1 indicates female. indicates male and x 2 = 1 indicates female. For example, x 2 might represent gender where x 2 = 0 For example, x 2 might represent gender where x 2 = 0 indicates male and x 2 = 1 indicates female. indicates male and x 2 = 1 indicates female. Qualitative Independent Variables In this case, x 2 is called a dummy or indicator variable. In this case, x 2 is called a dummy or indicator variable.

21 Slide © 2007 Thomson South-Western. All Rights Reserved As an extension of the problem involving the As an extension of the problem involving the computer programmer salary survey, suppose that management also believes that the annual salary is related to whether the individual has a graduate degree in computer science or information systems. The years of experience, the score on the programmer The years of experience, the score on the programmer aptitude test, whether the individual has a relevant graduate degree, and the annual salary ($1000) for each of the sampled 20 programmers are shown on the next slide. Qualitative Independent Variables n Example: Programmer Salary Survey

22 Slide © 2007 Thomson South-Western. All Rights Reserved Exper.ScoreScoreExper.SalarySalaryDegr. No NoYes YesYesYes Yes Degr. Yes Yes No NoYes Yes Yes Qualitative Independent Variables

23 Slide © 2007 Thomson South-Western. All Rights Reserved Estimated Regression Equation y = b 0 + b 1 x 1 + b 2 x 2 + b 3 x 3 ^where: y = annual salary ($1000) y = annual salary ($1000) x 1 = years of experience x 1 = years of experience x 2 = score on programmer aptitude test x 2 = score on programmer aptitude test x 3 = 0 if individual does not have a graduate degree x 3 = 0 if individual does not have a graduate degree 1 if individual does have a graduate degree 1 if individual does have a graduate degree x 3 is a dummy variable

24 Slide © 2007 Thomson South-Western. All Rights Reserved More Complex Qualitative Variables If a qualitative variable has k levels, k - 1 dummy If a qualitative variable has k levels, k - 1 dummy variables are required, with each dummy variable variables are required, with each dummy variable being coded as 0 or 1. being coded as 0 or 1. If a qualitative variable has k levels, k - 1 dummy If a qualitative variable has k levels, k - 1 dummy variables are required, with each dummy variable variables are required, with each dummy variable being coded as 0 or 1. being coded as 0 or 1. For example, a variable with levels A, B, and C could For example, a variable with levels A, B, and C could be represented by x 1 and x 2 values of (0, 0) for A, (1, 0) be represented by x 1 and x 2 values of (0, 0) for A, (1, 0) for B, and (0,1) for C. for B, and (0,1) for C. For example, a variable with levels A, B, and C could For example, a variable with levels A, B, and C could be represented by x 1 and x 2 values of (0, 0) for A, (1, 0) be represented by x 1 and x 2 values of (0, 0) for A, (1, 0) for B, and (0,1) for C. for B, and (0,1) for C. Care must be taken in defining and interpreting the Care must be taken in defining and interpreting the dummy variables. dummy variables. Care must be taken in defining and interpreting the Care must be taken in defining and interpreting the dummy variables. dummy variables.

25 Slide © 2007 Thomson South-Western. All Rights Reserved For example, a variable indicating level of education could be represented by x 1 and x 2 values as follows: For example, a variable indicating level of education could be represented by x 1 and x 2 values as follows: More Complex Qualitative Variables Highest Degree x 1 x 2 Bachelor’s00 Master’s10 Ph.D.01

26 Slide © 2007 Thomson South-Western. All Rights Reserved Residual Analysis n For simple linear regression the residual plot against and the residual plot against x provide the same information. and the residual plot against x provide the same information. n In multiple regression analysis it is preferable to use the residual plot against to determine if the model assumptions are satisfied.

27 Slide © 2007 Thomson South-Western. All Rights Reserved Standardized Residual Plot Against n Standardized residuals are frequently used in residual plots for purposes of: Identifying outliers (typically, standardized residuals +2) Identifying outliers (typically, standardized residuals +2) Providing insight about the assumption that the error term  has a normal distribution Providing insight about the assumption that the error term  has a normal distribution n The computation of the standardized residuals in multiple regression analysis is too complex to be done by hand n Excel’s Regression tool can be used