Deduction, Proofs, and Inference Rules. Let’s Review What we Know Take a look at your handout and see if you have any questions You should know how to.

Slides:



Advertisements
Similar presentations
Artificial Intelligence
Advertisements

Discrete Mathematics University of Jazeera College of Information Technology & Design Khulood Ghazal Mathematical Reasoning Methods of Proof.
Rules of Inferences Section 1.5. Definitions Argument: is a sequence of propositions (premises) that end with a proposition called conclusion. Valid Argument:
1 Section 1.5 Rules of Inference. 2 Definitions Theorem: a statement that can be shown to be true Proof: demonstration of truth of theorem –consists of.
The Foundations: Logic and Proofs
February 26, 2015Applied Discrete Mathematics Week 5: Mathematical Reasoning 1 Addition of Integers Example: Add a = (1110) 2 and b = (1011) 2. a 0 + b.
1 Introduction to Abstract Mathematics Valid AND Invalid Arguments 2.3 Instructor: Hayk Melikya
Deduction In addition to being able to represent facts, or real- world statements, as formulas, we want to be able to manipulate facts, e.g., derive new.
Use a truth table to determine the validity or invalidity of this argument. First, translate into standard form “Martin is not buying a new car, since.
Valid Arguments An argument is a sequence of propositions. All but the final proposition are called premises. The last statement is the conclusion. The.
CS128 – Discrete Mathematics for Computer Science
Logic 3 Tautological Implications and Tautological Equivalences
Syllabus Every Week: 2 Hourly Exams +Final - as noted on Syllabus
Proof by Deduction. Deductions and Formal Proofs A deduction is a sequence of logic statements, each of which is known or assumed to be true A formal.
Discrete Mathematics and its Applications
Fall 2002CMSC Discrete Structures1 Let’s proceed to… Mathematical Reasoning.
1.5 Rules of Inference.
February 25, 2002Applied Discrete Mathematics Week 5: Mathematical Reasoning 1 Addition of Integers How do we (humans) add two integers? Example: 7583.
Propositional Proofs 2.
Modus Ponens The following valid arguments show us how to apply the modus ponens (Rule of Detachment). a) 1) Lydia wins a ten-million-dollar lottery.
1 Sections 1.5 & 3.1 Methods of Proof / Proof Strategy.
Discrete Structures (DS)
INTRODUCTION TO LOGIC Jennifer Wang Fall 2009 Midterm Review Quiz Game.
Chapter Four Proofs. 1. Argument Forms An argument form is a group of sentence forms such that all of its substitution instances are arguments.
Natural Deduction Proving Validity. The Basics of Deduction  Argument forms are instances of deduction (true premises guarantee the truth of the conclusion).
From Truth Tables to Rules of Inference Using the first four Rules of Inference Modus Ponens, Modus Tollens, Hypothetical Syllogism and Disjunctive Syllogism.
Philosophy: Logic and Logical arguments
Today’s Topics Introduction to Proofs Rules of Inference Rules of Equivalence.
1 Introduction to Abstract Mathematics Expressions (Propositional formulas or forms) Instructor: Hayk Melikya
CS2013 Mathematics for Computing Science Adam Wyner University of Aberdeen Computing Science Slides adapted from Michael P. Frank ' s course based on the.
6.6 Argument Forms and Fallacies
Rules of Inference Section 1.6. Arguments in Propositional Logic A argument in propositional logic is a sequence of propositions. All but the final proposition.
Chapter 7 Evaluating Deductive Arguments II: Truth Functional Logic Invitation to Critical Thinking First Canadian Edition.
Symbolic Logic ⊃ ≡ · v ~ ∴. What is a logical argument? Logic is the science of reasoning, proof, thinking, or inference. Logic allows us to analyze a.
Invitation to Critical Thinking Chapter 7 Lecture Notes Chapter 7.
Today’s Topics Argument forms and rules (review)
Foundations of Discrete Mathematics Chapter 1 By Dr. Dalia M. Gil, Ph.D.
1 Propositional Proofs 1. Problem 2 Deduction In deduction, the conclusion is true whenever the premises are true.  Premise: p Conclusion: (p ∨ q) 
Discrete Mathematical Structures: Theory and Applications 1 Logic: Learning Objectives  Learn about statements (propositions)  Learn how to use logical.
Sound Arguments and Derivations. Topics Sound Arguments Derivations Proofs –Inference rules –Deduction.
Deductive Reasoning. Inductive: premise offers support and evidenceInductive: premise offers support and evidence Deductive: premises offers proof that.
Chapter 1 Logic and proofs
Formal logic The part of logic that deals with arguments with forms.
L = # of lines n = # of different simple propositions L = 2 n EXAMPLE: consider the statement, (A ⋅ B) ⊃ C A, B, C are three simple statements 2 3 L =
March 23 rd. Four Additional Rules of Inference  Constructive Dilemma (CD): (p  q) (r  s) p v r q v s.
Applied Discrete Mathematics Week 5: Mathematical Reasoning
Formal Logic CSC 333.
Natural Deduction: Using simple valid argument forms –as demonstrated by truth-tables—as rules of inference. A rule of inference is a rule stating that.
Demonstrating the validity of an argument using syllogisms.
Proof Techniques.
Rules of Inference Section 1.6.
6.1 Symbols and Translation
7.1 Rules of Implication I Natural Deduction is a method for deriving the conclusion of valid arguments expressed in the symbolism of propositional logic.
CS201: Data Structures and Discrete Mathematics I
3.5 Symbolic Arguments.
Deductive Reasoning: Propositional Logic
CS 270 Math Foundations of CS
CS 220: Discrete Structures and their Applications
Applied Discrete Mathematics Week 1: Logic
The Method of Deduction
Malini Sen WESTERN LOGIC Presented by Assistant Professor
Natural Deduction Hurley, Logic 7.1.
Natural Deduction Hurley, Logic 7.2.
Foundations of Discrete Mathematics
Natural Deduction Hurley, Logic 7.3.
CS201: Data Structures and Discrete Mathematics I
The Foundations: Logic and Proofs
Chapter 8 Natural Deduction
3.5 Symbolic Arguments.
Rules of inference Section 1.5 Monday, December 02, 2019
Presentation transcript:

Deduction, Proofs, and Inference Rules

Let’s Review What we Know Take a look at your handout and see if you have any questions You should know how to translate all of these fairly simple sentences into their logical components (be able to go from English to logic symbolization)

Formal Proof of Validity: Translate the Following If Anderson was nominated, the she went to Boston. If she went to Boston, then she campaigned there. If she campaigned there, she met Douglas. Anderson did not meet Douglas. Either Anderson was nominated or someone more eligible was selected. Therefore someone more eligible was selected.

1. Translate A B B C C D ~D A v E Therefore E ∩ ∩ ∩

2. Establish Validity It might seem obvious this argument is valid, but we want to prove it We could use truth tables, but this would require us to make a table with 32 rows since there are 5 different simple statements involved So now what? Prove validity by deducing its conclusion from its premises using already-known, elementary valid arguments

2. Establish Validity (still) We’ll use three of these basic rules of inference (there are a total of 9) in this example: 1. Hypothetical Syllogism (H.S.) If p then q And if q then r Therefore: if p then r 2. modus tollens (M.T.) If p then q ~q Therefore ~p 3. Disjunctive Syllogism (D.S.) p v q ~p Therefore q

Validity Established Looking at the argument we want to prove valid, we see that the conclusion can be deduced from the five premises of the original argument by four elementary valid arguments (2 H.S. + 1 M.T. + 1 D.S.) This proves that our original argument is valid

3. Write the Proof 1. Write the premises and the statements that we deduce from them in a single column – to the right of this column, for each statement, its “justification” is written (basically the reason why we include that statement in the proof) 2. List all the premises first, then the logic (e.g. inference rules) used to get at the conclusion (which will be listed last)

3. What it Looks Like 1. A B 2. B C 3. C D 4. ~D 5. A v E 6. A C 1,2 H.S. 7. A D 6,3 H.S. 8. ~A 7,4 M.T. 9. E 5,8 D.S.∩ ∩ ∩ ∩ ∩ The justification for each statement (the right most column) consists of the numbers of the preceding statements from which that line is inferred, together with the abbreviation for the rule of inference used to get it

Definitions A formal proof that shows an argument is valid is a sequence of statements, each of which is either a premise of that argument or follows from preceding statements of the sequence by an elementary valid argument (i.e. our inference rules), such that the last statement in the sequence is the conclusion of the argument whose validity is being proved An elementary valid argument is any argument that is a substitution instance of an elementary valid argument form (e.g. our inference rules) We don’t have time to prove the validity of each one of these statements, so take our word for it that they are valid

More Complex Substitutions (A B) [C ≡ (D v E)] A B Therefore C ≡ (D v E) This sequence above is an elementary valid argument because it is a substitution instance of the elementary valid argument form modus ponens (M.P.), another one of our inference rules. See if you can see it: modus ponens (M.P.): If p then q And p Therefore q∩

The Nine Rules of Inference (Pt. 1) 1. Modus Ponens (M.P.) If p then q p Therefore q 2. Modus Tollens (M.T.) If p then q ~q Therefore ~p

The Nine Rules of Inference (Pt. 2) 3. Hypothetical Syllogism (H.S.) If p then q And if q then r Therefore: if p then r 4. Disjunctive Syllogism (D.S.) p v q ~p Therefore q

The Nine Rules of Inference (Pt. 3) 5. Constructive Dilemma (C.D.) (p q) (r s) p v r Therefore: (q v s) 6. Absorption (Abs.) p q Therefore: p (p q) ∩ ∩ ∩ ∩

The Nine Rules of Inference (Pt. 4) 7. Simplification (Simp.) p q Therefore: p 8. Conjunction (Conj.) p q Therefore: (p q)

The Nine Rules of Inference (Pt. 5) 9. Addition (Add.) p Therefore: (p v q) These nine rules of inference correspond to elementary argument forms whose validity is easily established by truth tables. With their air, formal proofs of validity can be constructed for a wide range of more complicated arguments.

Example: Prove the following given the premises (using inference rules) 1. W X 2. (W Y) (Z v X) 3. (W X) Y 4. ~Z Therefore X ∩∩ ∩ ∩

Solution: (Strategy Hint: see what you can ‘create’ from the premises using the inference rules we know. Keep in mind what you’re looking for: this will keep you on track) 1. W X 2. (W Y) (Z v X) 3. (W X) Y 4. ~Z 5. W (W X) 1 Abs. 6. W Y 5,3 H.S. 7. Z v X 2,6 M.P. 8. X 7,4 D.S. ∩ ∩ ∩ ∩ ∩ ∩ Line 5: look at line 1. Use our absorption rule Line 6: A little harder: look at line 5 then 3: it follows the H.S. pattern: W (W X) (W X) Y Therefore: W Y Line 7: a fairly simple M.P. form from lines 2 and 6 Line 8: use D.S. from lines 7 and 4 ∩ ∩ ∩

Example 2 1. I J 2. J K 3. L M 4. I v L Therefore: K v M ∩ ∩ ∩

Solution 1. I J 2. J K 3. L M 4. I v L 5. I K 1,2 H.S. 6. (I K) (L M) 5,3 Conj. 7. K v M 6,4 C.D. ∩ ∩ ∩ ∩ ∩ ∩