IOP, Bhubaneswar 22 nd Feb 2014 Prospect of using single photons propagating through Rydberg EIT medium for quantum computation Ashok Mohapatra National.

Slides:



Advertisements
Similar presentations
Femtosecond lasers István Robel
Advertisements

A Comparison of Two CNOT Gate Implementations in Optical Quantum Computing Adam Kleczewski March 2, 2007.
Outlines Rabi Oscillations Properties of Rydberg atoms Van Der Waals Force and Rydberg Blockade The implementation of a CNOT gate Preparation of Engtanglement.
High-resolution spectroscopy with a femtosecond laser frequency comb Vladislav Gerginov 1, Scott Diddams 2, Albrecht Bartels 2, Carol E. Tanner 1 and Leo.
First Year Seminar: Strontium Project
Zero-Phonon Line: transition without creation or destruction of phonons Phonon Wing: at T = 0 K, creation of one or more phonons 7. Optical Spectroscopy.
In Search of the “Absolute” Optical Phase
Towards a Laser System for Atom Interferometry Andrew Chew.
Laser System for Atom Interferometry Andrew Chew.
TeraHertz Kerr effect in GaP crystal
Title : Investigation on Nonlinear Optical Effects of Weak Light in Coherent Atomic Media  Author : Hui-jun Li  Supervisor: Prof Guoxiang Huang  Subject:
Generation of short pulses
2. High-order harmonic generation in gases Attosecond pulse generation 1. Introduction to nonlinear optics.
Cavity decay rate in presence of a Slow-Light medium
Rydberg physics with cold strontium James Millen Durham University – Atomic & Molecular Physics group.
Danielle Boddy Durham University – Atomic & Molecular Physics group Laser locking to hot atoms.
Universal Optical Operations in Quantum Information Processing Wei-Min Zhang ( Physics Dept, NCKU )
PBG CAVITY IN NV-DIAMOND FOR QUANTUM COMPUTING Team: John-Kwong Lee (Grad Student) Dr. Renu Tripathi (Post-Doc) Dr. Gaur Pati (Post-Doc) Supported By:
Danielle Boddy Durham University – Atomic & Molecular Physics group Red MOT is on its way to save the day!
Narrow transitions induced by broad band pulses  |g> |f> Loss of spectral resolution.
Rydberg excitation laser locking for spatial distribution measurement Graham Lochead 24/01/11.
Single-ion Quantum Lock-in Amplifier
References Acknowledgements This work is funded by EPSRC 1.Paul Siddons, Charles S. Adams, Chang Ge & Ifan G. Hughes, “Absolute absorption on rubidium.
References Acknowledgements This work is funded by EPSRC 1.R. P. Abel, U. Krohn, P. Siddons, I. G. Hughes & C. S. Adams, Opt Lett (2009). 2.A.
George R. Welch Marlan O. Scully Irina Novikova Andrey Matsko M. Suhail Zubairy Eugeniy Mikhailov M. Suhail Zubairy Irina Novikova Andrey Matsko Ellipticity-Dependent.
First year talk Mark Zentile
Lecture 3 INFRARED SPECTROMETRY
Metamaterial Emergence of novel material properties Ashida Lab Masahiro Yoshii PRL 103, (2009)
Laser System for Atom Interferometry Andrew Chew.
Single atom lasing of a dressed flux qubit
Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier.
High-speed ultrasensitive measurements of trace atmospheric species 250 spectra in 0.7 s David A. Long A. J. Fleisher, D. F. Plusquellic, J. T. Hodges.
Light Propagation in Photorefractive Polymers
Quantum computing with Rydberg atoms Klaus Mølmer Coherence school Pisa, September 2012.
Laser-microwave double resonance method in superfluid helium for the measurement of nuclear moments Takeshi Furukawa Department of Physics, Graduate School.
SQL Related Experiments at the ANU Conor Mow-Lowry, G de Vine, K MacKenzie, B Sheard, Dr D Shaddock, Dr B Buchler, Dr M Gray, Dr PK Lam, Prof. David McClelland.
Experiments with ultracold RbCs molecules Peter Molony Cs Rb.
Sub-Doppler Spectroscopy of Molecular Ions in the Mid-IR James N. Hodges, Kyle N. Crabtree, & Benjamin J. McCall WI06 – June 20, 2012 University of Illinois.
Using this method, the four wave transition linewidth was measured at several different frequencies of current modulation. The following plot shows the.
Coherent excitation of Rydberg atoms on an atom chip
Progress towards laser cooling strontium atoms on the intercombination transition Danielle Boddy Durham University – Atomic & Molecular Physics group.
Observation of ultrafast nonlinear response due to coherent coupling between light and confined excitons in a ZnO crystalline film Ashida Lab. Subaru Saeki.
Refractive index enhancement with vanishing absorption in an atomic vapor Deniz Yavuz, Nick Proite, Brett Unks, Tyler Green Department of Physics, University.
Quantum Optics II – Cozumel, Dec. 6-9, 2004
Excited state spatial distributions in a cold strontium gas Graham Lochead.
I.Introduction II. System Design B.E. Unks, N. A. Proite, D. D. Yavuz University of Wisconsin – Madison The above figure shows a block diagram of the apparatus.
Non-ideal Cavity Ring-Down Spectroscopy: Linear Birefringence, Linear Polarization Dependent Loss of Supermirrors, and Finite Extinction Ratio of Light.
Pablo Barberis Blostein y Marc Bienert
Nonlinear generation of radiation by periodically poled LiTaO 3 crystals Single pass UV generation Intracavity Second Harmonic Generation HWP: half wave.
Development of a System for High Resolution Spectroscopy with an Optical Frequency Comb Dept. of Applied Physics, Fukuoka Univ., JST PRESTO, M. MISONO,
Generation of Spurious Signals in Nonlinear Frequency Conversion Tyler Brewer, Russell Barbour, Zeb Barber.
Observation of Raman Self-Focusing in an Alkali Vapor Cell Nicholas Proite, Brett Unks, Tyler Green, and Professor Deniz Yavuz.
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
FREQUENCY-AGILE DIFFERENTIAL CAVITY RING-DOWN SPECTROSCOPY
SQL Related Experiments at the ANU Conor Mow-Lowry, G de Vine, K MacKenzie, B Sheard, Dr D Shaddock, Dr B Buchler, Dr M Gray, Dr PK Lam, Prof. David McClelland.
Daniel Craft, Dr. John Colton, Tyler Park, Phil White, Brigham Young University.
PONDEROMOTIVE ROTATOR: REQUIREMENTS Zach Korth (Caltech) – GWADW ‘12 – Waikoloa, HI.
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
INDIRECT TERAHERTZ SPECTROSCOPY OF MOLECULAR IONS USING HIGHLY ACCURATE AND PRECISE MID-IR SPECTROSCOPY Andrew A. Mills, Kyle B. Ford, Holger Kreckel,
Many-Body Effects in a Frozen Rydberg Gas Feng zhigang
Four wave mixing in submicron waveguides
Circuit QED Experiment
Photon counter with Rydberg atoms
Fiber Laser Preamplifier
Mach-Zehnder atom interferometer with nanogratings
Principle of Mode Locking
Stabilizing the Carrier-Envelope Phase of the Kansas Light Source
Why Do CPO Lead to Slow Light When the Laser
Norm Moulton LPS 15 October, 1999
Optical π phase shift created with a single-photon pulse
Presentation transcript:

IOP, Bhubaneswar 22 nd Feb 2014 Prospect of using single photons propagating through Rydberg EIT medium for quantum computation Ashok Mohapatra National Institute of Science Education and Research, Bhubaneswar

Outline  Introduction to quantum computation using photons  Introduction to Rydberg EIT and its non- linearity  Our experimental progress at NISER  Conclusion

Classical computerQuantum computer Bit Qubit 0 or 1 Polarization states: |H> or |V> |  > =  1 |H> +  2 |V> 0 V or 5 V of a transistor output 2-level quantum system (e.g. Single photon) Classical gates AND, OR, NOT etc (Universal) Single qubit rotation operators and 2-qubit Controlled-NOT gate (Universal quantum gates) |α 1 | 2 +|α 2 | 2 =1

Qunatum computation using photons Single photon source Single photon detctors Optical elements for gate operation A Kerr non-linear medium for interactions of photons to devise a CNOT gate

Single qubit quantum gates Each photon as a qubit with two orthogonal polarized state Quarter wave plate Hadamard gate Half wave plate two Hadamard operation

CNOT gate: Interaction of photons Kerr non-linearity of a medium Increasing the length doesn‘t help due to strong absorption in the medium Electromagnetically Induced Transparency (EIT) provides a larger 3rd order non-linearity without absorption. where n 2 ≈ m 2 /W for typical glass

Electromagnetically induced transparency (EIT) Probe (Ω p ) F=2 F=1 87 Rubidium 5S 1/2 5P 3/2 F‘=3 nS 1/2 6 MHz

Electromagnetically induced transparency (EIT) 87 Rubidium 6 MHz 500 kHz Probe (Ω p ) F=2 F=1 5S 1/2 5P 3/2 F‘=3 nS 1/2 σ +σ + σ -σ - Coupling (Ω c ) EIT still doesn‘t provide enough non-linearity at single photon level

Rydberg EIT Rydberg EIT: Mohapatra et al., PRL, 98, (2007) (Thermal atoms) Weatherill et al., J. Phys. B, 41, (2008) (Cold atoms) 87 Rubidium 6 MHz 500 kHz Probe (Ω p ) F=2 F=1 5S 1/2 5P 3/2 F‘=3 nS 1/2 σ +σ + σ -σ - Coupling (Ω c ) Rydberg state

Rydberg atoms Size n 2 Dipole moment n 2 Lifetime n 3 Polarizability n 7 van der Waals n 11 Sensitivity to electric fields Scaling with principal quantum number n (low) Long lived 100 μsec for n > 40 Strongly interacting (QIP) Atom - atom interactions Rydberg states: large n Strong dipolar interaction Giant Kerr effect 5S 1/2 5P 3/2 5P 1/2 Few 100 nm

Rydberg Rydberg interaction Simplest case: van der Waals Atomic distance E Ω

Rydberg blockade Simplest case: van der Waals blockade condition few µm Atomic distance E Ω

Rydberg blockade ≡ Ω Urban et al., Nature Phys. 5, 110 (2009) Gaetan et al., Nature Phys. 5, 115 (2009) Wilk et al., Phys. Rev. Lett. 104, (2010)

Vogt et al., PRL 97, (2006) Heidemann et al., PRL 99, (2007) Raitzsch et al., PRL 100, (2008) Superatom

Non-linearity of Rydberg EIT 6 MHz 500 kHz Probe (Ω p ) F=1 Coupling (Ω c ) Rydberg state Dark state that doesn‘t couple to the probe beam and hence probe beam become transparent

Non-linearity of Rydberg EIT In the blockade sphere, more than one atom can not be excited which makes the dark state very fragile and get mixed with intermediate state. For large probe power, the EIT peak reduces with larger probe absorption. (a)One, (b) two, (c) three atoms per blockade sphere Durham university, UK group Pritchard et al. PRL, 105, (2010)

Non-linearity of Rydberg EIT (Pushing to single photon level) MIT group Peyronel et al. Nature, 488, 57 (2012)

Non-linearity of Rydberg EIT (Pushing to single photon level) MIT group, 2013, Firstenberg et al.

Optical non-linearity of Rydberg EIT in thermal vapor Rydberg blockade radius is only scaled approximately by a factor of 3 in thermal vapor –Kuebler et al. Nature Photo. 4, 112 (2010) Optical pumping rate to the dark state is much faster than the transit time of the atoms

Measurement of the non-linear refractive index Rydberg EIT medium ω ω+δω+δ

ω ω+δω+δ

5s 1/2 (F=3)→5p 3/2 (F’)→45d 5s 1/2 (F=3)→5p 3/2 (F’)→44s 5s 1/2 (F=3)→5p 3/2 (F’)→49d

Acknoledgement Arup Bhowmik (PhD) Sabyasachi Barik (Int. MSc) Surya Narayan Sahoo (Int. MSc) Charles Adams group at Durham University

Rydberg EIT with large probe power

EIT with large probe power

Rydberg EIT in thermal vapor

44d EIT spectra Reference: Mohapatra et al. PRL (2007)

High precession spectroscopy (d - state fine structure splitting) Mohapatra et al. PRL 98, (2007). K. C. Harvey et al, Phys. Rev. Lett. 38, 537 (1977). W. Li, I. Mourachko, M. W. Noel, and T. F. Gallagher, Phys. Rev. A 67, (2003).

5s 5p ns Giant Kerr effect of Rydberg EIT medium Electric field sensitivity of Rydberg state combined with the non-linear properties of EIT

Giant Kerr effect of Rydberg EIT medium 5s 5p ns ΔWΔW ∆W: 1.Stark shift by applying an external Electric field (DC Kerr effect) 2.Interaction induced shift (Similar to AC Kerr effect) (DC Kerr effect) Electric field sensitivity of Rydberg state combined with the non-linear properties of EIT

Experimental demonstration by phase modulation of light AOM + - Fast photodetector (1.2 GHz bandwidth) Spectrum analyzer

Phase modulation of light (Sideband spectra)

N-dependence of the Kerr constant α scales as n* 7 Ω c scales as n* -3/2 c 1 determines the absolute maximum c 2 determines the n* dependent scaling

Kerr effect in Rydberg EIT medium (Order of magnitude calculation) Gas (CO 2, 1 atm)B 0 ≈ m/V 2 WaterB 0 ≈ m/V 2 GlassB 0 ≈ m/V 2 NitrobenzeneB 0 ≈ m/V 2 Rydber dark state (thermal atoms)B 0 ≈ m/V 2 6 orders of magnitude bigger 10 orders of magnitude is expected for cold atoms

Noise spectra AOM Spectrum analyzer

More on Electro-optic and electrometry Electro-optic control of Rydberg dark state polariton Bason et al. PRA 77, (2008) Enhanced electric field sensitivity of rf- dressed Rydberg dark states (Bason et al. Bason et al. New J. Phys. 12, (2010)

Outlook QIP using thermal atoms in microcell –Quantum computation using photon –Single photon source –Quantum computation using mesoscopic ensemble of atoms Versatile electric field sensor THz imaging

Replace the EO crystal by Rydberg EIT in a microcell filled with thermal atoms (Preliminary idea)

Prof. C. S. Adams Dr. K. J. Weatherill Mr. M. G. Bason Mr. J. Pritchard Mr. R. Abel Durham University Group

Frequency stabilization of blue laser to a EIT peak using frequency modulation scheme (schematic) Toptica 480 nm LP filter Toptica FALC module Fast feedback to master current (BW ~ 1 MHz) Slow feedback to master piezo PID Stabilized to Polarization spectroscopy 780 nm λ/2 λ/4 EOM Phase shifter 30 dBm power amplifier 20 dB amplifier Photodetector 1 MV/W, 10 MHz Di-chroic mirror Mixer Toptica DL pro

Home made EOM D. J. McCarron et al., Meas. Sci. Tech. 2008

Ultra-stable, no long term drift and 100 kHz of relative line- width observed with 1 μW of probe power Stabilization demonstrated for 26D 5/2 state by using less than 2 mW of blue light For 58D 3/2 state, less than 15 mW of blue light was used Abel et al, under preparation Frequency stabilization of blue laser to a EIT peak using frequency modulation scheme

Kerr effect in Rydberg EIT medium

In the regime

Kerr effect in Rydberg EIT medium In the regime

Kerr effect in Rydberg EIT medium Kerr effect (1875) In the regime

Measurement of the Kerr effect of Rydberg EIT medium 5p - 32s Jamin Interferometer

Measurement of the Kerr effect of Rydberg EIT medium + V - V 5p - 32s Jamin Interferometer Both the lasers are locked to the EIT signal Abel et al., submitted to Appl. Phys. Lett.

Measurement of the Kerr effect of Rydberg EIT medium

N-dependence of the Kerr constant

Sidebands on Rydberg dark states For small modulation frequency and Stark shift compared to any dipole allowed transition Ω=-1/2αE 2

Phase modulation of Rydberg dark states Ω/2

2nd order sidebands

1 st harmonic sidebands For an ac electric field (E 0 ) and dc field (E’)

1 st harmonic sidebands For an ac electric field (E 0 ) and dc field (E’) 2 nd harmonic sidebands 1 st harmonic sidebands Application to precesion electrometry

Interaction of photons using EIT F=1 nS 1/2 Signal photon 1 Coupling

Interaction of photons using EIT F=1 nS 1/2 Large 3rd order non-linearity with less absorption But, still not enough to have π-phase shift to devise a useful phase gate at single photon level (Shapiro et al., PRA, 73, (2006)) Signal photon 1 Photon 2 Coupling