Block II, Unit I, Fundamentals of Symbolic AI  The starting point is: expressions that both humans and computers can reason about  This idea led to PSSH.

Slides:



Advertisements
Similar presentations
Artificial Intelligence
Advertisements

1 Knowledge Representation Introduction KR and Logic.
ARTIFICIAL INTELLIGENCE [INTELLIGENT AGENTS PARADIGM] Professor Janis Grundspenkis Riga Technical University Faculty of Computer Science and Information.
Dr. David A Ferrucci -- Logic Programming and AI Lecture Notes Knowledge Structures Building the Perfect Object.
Presentation on Artificial Intelligence
CHAPTER 13 Inference Techniques. Reasoning in Artificial Intelligence n Knowledge must be processed (reasoned with) n Computer program accesses knowledge.
Inference and Reasoning. Basic Idea Given a set of statements, does a new statement logically follow from this. For example If an animal has wings and.
Rulebase Expert System and Uncertainty. Rule-based ES Rules as a knowledge representation technique Type of rules :- relation, recommendation, directive,
Logic Use mathematical deduction to derive new knowledge.
Knowledge Representation
Inferences The Reasoning Power of Expert Systems.
Chapter 6: The physical symbol system hypothesis
Problem Solving and Search in AI Part I Search and Intelligence Search is one of the most powerful approaches to problem solving in AI Search is a universal.
Rule Based Systems Alford Academy Business Education and Computing
Chapter 11 Artificial Intelligence and Expert Systems.
1 Lecture 34 Introduction to Knowledge Representation & Expert Systems Overview  Lecture Objective  Introduction to Knowledge Representation  Knowledge.
Rules and Expert Systems
Production Rules Rule-Based Systems. 2 Production Rules Specify what you should do or what you could conclude in different situations. Specify what you.
EXPERT SYSTEMS Part I.
Logical and Rule-Based Reasoning Part I. Logical Models and Reasoning Big Question: Do people think logically?
Sepandar Sepehr McMaster University November 2008
Knowledge representation methods جلسه سوم. KR is AI bottleneck The most important ingredient in any expert system is knowledge. The power of expert systems.
Some Thoughts to Consider 6 What is the difference between Artificial Intelligence and Computer Science? What is the difference between Artificial Intelligence.
ARTIFICIAL INTELLIGENCE [INTELLIGENT AGENTS PARADIGM] Professor Janis Grundspenkis Riga Technical University Faculty of Computer Science and Information.
Artificial Intelligence Lecture No. 15 Dr. Asad Ali Safi ​ Assistant Professor, Department of Computer Science, COMSATS Institute of Information Technology.
Artificial Intelligence Lecture 9. Outline Search in State Space State Space Graphs Decision Trees Backtracking in Decision Trees.
Knowledge representation
Production Systems A production system is –a set of rules (if-then or condition-action statements) –working memory the current state of the problem solving,
Artificial Intelligence
Knowledge based Humans use heuristics a great deal in their problem solving. Of course, if the heuristic does fail, it is necessary for the problem solver.
Propositional Calculus Composed of symbols –P – some true statement P might represent something like “It is Monday” or “the car is red” And sentences –a.
1 Artificial Intelligence GholamReza GhassemSani Fall 1383.
Constraint Satisfaction Problems (CSPs) CPSC 322 – CSP 1 Poole & Mackworth textbook: Sections § Lecturer: Alan Mackworth September 28, 2012.
Fundamentals of Information Systems, Third Edition2 Principles and Learning Objectives Artificial intelligence systems form a broad and diverse set of.
Problems, Problem Spaces and Search
Logical Agents Logic Propositional Logic Summary
Artificial Intelligence By Michelle Witcofsky And Evan Flanagan.
Copyright © Cengage Learning. All rights reserved. CHAPTER 3 THE LOGIC OF QUANTIFIED STATEMENTS THE LOGIC OF QUANTIFIED STATEMENTS.
Chapter 1, Part II: Predicate Logic With Question/Answer Animations.
ARTIFICIAL INTELLIGENCE [INTELLIGENT AGENTS PARADIGM] Professor Janis Grundspenkis Riga Technical University Faculty of Computer Science and Information.
CTM 2. EXAM 2 Exam 1 Exam 2 Letter Grades Statistics Mean: 60 Median: 56 Modes: 51, 76.
Automated Reasoning Early AI explored how to automated several reasoning tasks – these were solved by what we might call weak problem solving methods as.
Intelligent Control Methods Lecture 7: Knowledge representation Slovak University of Technology Faculty of Material Science and Technology in Trnava.
KNOWLEDGE BASED SYSTEMS
11 Artificial Intelligence CS 165A Thursday, October 25, 2007  Knowledge and reasoning (Ch 7) Propositional logic 1.
 Negnevitsky, Pearson Education, Introduction, or what is knowledge? Knowledge is a theoretical or practical understanding of a subject or a domain.
1 UNIT-3 KNOWLEDGE REPRESENTATION. 2 Agents that reason logically(Logical agents) A Knowledge based Agent The Wumpus world environment Representation,
Forward and Backward Chaining
Artificial Intelligence, simulation and modelling.
Some Thoughts to Consider 5 Take a look at some of the sophisticated toys being offered in stores, in catalogs, or in Sunday newspaper ads. Which ones.
Artificial Intelligence Knowledge Representation.
COMPUTER SYSTEM FUNDAMENTAL Genetic Computer School INTRODUCTION TO ARTIFICIAL INTELLIGENCE LESSON 11.
Artificial Intelligence: Applications
Lecture 14. Recap Problem Solving GA Simple GA Examples of Mutation and Crossover Application Areas.
Artificial Intelligence Logical Agents Chapter 7.
Proof And Strategies Chapter 2. Lecturer: Amani Mahajoub Omer Department of Computer Science and Software Engineering Discrete Structures Definition Discrete.
Knowledge Representation Techniques
Chapter 7. Propositional and Predicate Logic
Knowledge Representation
Knowledge Representation
Course Instructor: knza ch
Introduction Artificial Intelligent.
KNOWLEDGE REPRESENTATION
Back to “Serious” Topics…
Haskell Tips You can turn any function that takes two inputs into an infix operator: mod 7 3 is the same as 7 `mod` 3 takeWhile returns all initial.
Chapter 7. Propositional and Predicate Logic
Predicates and Quantifiers
Introduction to Artificial Intelligence Instructor: Dr. Eduardo Urbina
Logical and Rule-Based Reasoning Part I
Habib Ullah qamar Mscs(se)
Presentation transcript:

Block II, Unit I, Fundamentals of Symbolic AI  The starting point is: expressions that both humans and computers can reason about  This idea led to PSSH  Symbolic representation  Symbolic reasoning 1

Block II, Unit I, Fundamentals of Symbolic AI This unit has nine sections  Introduction  What is intelligence  Examples of intelligent behavior  The physical symbol system hypothesis  Representation and reasoning  Developing representations  Examples of symbol representations  Representation  Reasoning 2

Block II, Unit I, Fundamentals of Symbolic AI What is intelligence  Are intelligent actions only ones that are learnt or could an instinctive?  Are intelligent tasks only the ones that can only be done competently by a subset of ‘intelligent’ people, or do tasks that almost anyone can manage, such as speaking, planning or manipulating objects, require intelligence too?  Is intelligence in some way related to expertise? 3

Block II, Unit I, Fundamentals of Symbolic AI What is intelligence  Are intelligent actions only ones that are learnt or could an instinctive?  AI has traditionally tended to focus on a number of behaviors that have come to be labelled as, or are assumed to be, ‘intelligent’. These include:  natural language processing: the creation of machines capable of understanding and responding to human languages such as English;  expert problem solving: for instance, diagnosing medical conditions from complex sets of symptoms;  planning and scheduling tasks such as airline scheduling or planning the layout of a factory floor;  logical reasoning, often under conditions of uncertainty. Intelligence comes from knowledge and the use of knowledge. 4

Block II, Unit I, Fundamentals of Symbolic AI Examples of intelligent behavior: Interior design: Using the space efficiently Finding the drawers … 5

Block II, Unit I, Fundamentals of Symbolic AI Examples of intelligent behavior: Route planning Maps are symbolic representations 6

Block II, Unit I, Fundamentals of Symbolic AI The PSSH:  Many kinds of intelligent behaviour that AI scientists have tried to replicate on machines, including:  natural language processing  expert problem solving  logical reasoning  planning and scheduling. This list is by no means exhaustive. One might add, for example:  visual processing and recognition  controlling physical movement 7

Block II, Unit I, Fundamentals of Symbolic AI The PSSH:  One conventional view of intelligence is that it is a process of:  taking in information from the world;  processing it some sophisticated way and identifying a sensible solution;  doing something with the solution. Activity 1.1 Page 18, the paper “computer science and the empirical inquiry: symbols and search” by Newell and Simon, the course DVD 8

Block II, Unit I, Fundamentals of Symbolic AI The PSSH:  Following this article, the aim of all science is to pin down the essential facts of some aspect of nature.  Newell and Simon propose just such a model of an intelligent system, which they call a symbolic system or a physical symbol system. 9

Block II, Unit I, Fundamentals of Symbolic AI The PSSH:  Symbols can be gathered together into symbol structures or expressions the two terms seem to be interchangeable.  Expressions (which can be single symbols) designate things in the world, which Simon and Newell term objects.  Some expressions specify processes that operate on other expressions within the physical symbol system.  The task of identifying a process, applying it to an expression and so changing the expression in some way is termed interpretation.  physical symbol systems are capable of manipulating not only the designations of objects, but also their own processes. 10

Block II, Unit I, Fundamentals of Symbolic AI The PSSH:  symbol, defining this simply as some entity that exists in the real world and obeys the laws of physics.  a physical symbol system is a collection of symbols and symbol structures.  Certain symbols or symbol structures designate objects in the real world;  others represent processes that can occur.  The combination of all the symbol expressions within a physical symbol system determines the system’s state.  The state evolves over time as processes within the system (also expressed as symbols and symbol structures) operate on it.  The set of states that a physical symbol system can be in is termed the system’s state space, 11

Block II, Unit I, Fundamentals of Symbolic AI Representation and reasoning: Example one: the water jar problem Example two, the Missionaries and cannibals problem. 12

Block II, Unit I, Fundamentals of Symbolic AI 13

Block II, Unit I, Fundamentals of Symbolic AI Developing Representation: Exercises 1.10, 1.11, 1.12, 1.13 P.29 The 32 dominos covering two squares on the chessboard 14

Block II, Unit I, Fundamentals of Symbolic AI Example of symbol representations:  Chess is the classic problem of AI. 15

Block II, Unit I, Fundamentals of Symbolic AI Example of symbol representations:  Chess is the classic problem of AI.  Assigning symbols: w for white and b for black, and the positions:  on(a,1,_)  on(b,1,_)  on(c,1,w(K))  on(d,1,w(R)) ...  on(b,6,_)  on(c,6,b(N))  on(d,6,b(P)) 16

Block II, Unit I, Fundamentals of Symbolic AI  Each square is represented by an expression consisting of a predicate name (in this case on) and three arguments (the symbols inside the brackets, separated by commas).  The first argument represents the square’s column (known as the file in chess jargon); the second represents the row (known as the rank);  The third gives the type of piece there.  The piece is itself represented by a predicate name (w or b) and one argument (the kind of piece), with _ representing an empty square. 17

Block II, Unit I, Fundamentals of Symbolic AI Processes: the moves that pieces are legally capable of making.  Each chess piece moves in its own particular way.  The rook moves horizontally or vertically as far as you like, but must stop when reaching another piece (it can never leap over an occupied square).  No piece, including the rook, may land on a square occupied by a piece of its own colour, but it is possible to move onto a square occupied by a piece of the opposite colour 18

Block II, Unit I, Fundamentals of Symbolic AI Processes: the moves that pieces are legally capable of making. 19

Block II, Unit I, Fundamentals of Symbolic AI Processes: the moves that pieces are legally capable of making.  Taking the position shown in Figure 1.11, two of the expressions representing the state of the board at this point would be: on( d, 1, w ( R )) on( d, 5,_)  Now suppose it is white’s turn to move and he decides to move his rook on d1 to d5  The move will then alter these two expressions to: on( d, 1,_) on( d, 5, w ( R )) 20

Block II, Unit I, Fundamentals of Symbolic AI  Exercise 1.15 P.34: amazing conclusion.  There are around possible state of a chess game  32 pieces to store, 6 types, we need 194 bits=24 bytes to store each position  To hold all the reasonable games of chess, we need 2.4  Gb  This requires a hard disk of 1.2  m 2  To compare, the surface area of the earth is around 5  m 2  Possible solution: heuristic search. 21

Block II, Unit I, Fundamentals of Symbolic AI  Known patterns: the pin and the fork. 22

Block II, Unit I, Fundamentals of Symbolic AI  Expert systems:  One particular type of intelligent systems is the expert system.  Its design is as follows: 23

Block II, Unit I, Fundamentals of Symbolic AI  Expert systems: example  Car maintenance  Doctor diagnostics Production rules: IF NOT engine-turns-over AND NOT headlights-are-bright THEN problem-with-battery  These rules can be used for inference, where new knowledge is discovered about a situation.  The rule above is able to determine whether the battery in a car is flat.  The rule is in two parts: the antecedent or premise (everything between the IF and the THEN) and the consequent or conclusion (everything after the THEN).  If the inference process can show that the antecedent is true, then the consequent is also true.  When a rule is used to prove its consequent, that rule is said to fire. 24

Block II, Unit I, Fundamentals of Symbolic AI  Expert systems dialogue 25

Block II, Unit I, Fundamentals of Symbolic AI Representations: facts and actions  Declarative knowledge: can be explicitly state: my cup is empty  Procedural knowledge: knowledge how to speak French, or how to learning how to drive, or prepare a satisfying meal.  Base knowledge: concerns the rules of the game  Meta knowledge: can be used to guide the player’s reasoning to explore the promising moves while quickly disregarding the bad ones.  Meta reasoning: it makes possible for the system to reason about what it is doing and how it is doing it. For example, a chess player may know that a particular move will set up an attack later. 26

Block II, Unit I, Fundamentals of Symbolic AI Representations: features of good representation  Coverage  Parsimony (concise)  Clarity  Use of derived knowledge  Specificity: advantage of using existing notations: predicate logic is often used as a notation for expressing knowledge. 27

Block II, Unit I, Fundamentals of Symbolic AI Examples of representations: symbolic logic: propositional logic and predicate logic  Propositional logic  R represents the proposition “it is raining”  U represents the proposition “I am carrying an umbrella”  W represents the proposition “I am wet” (R  U)   W 28

Block II, Unit I, Fundamentals of Symbolic AI 29

Block II, Unit I, Fundamentals of Symbolic AI 30

Block II, Unit I, Fundamentals of Symbolic AI Examples of representations: symbolic logic: propositional logic and predicate logic  Predicate logic: allows us to state sentence like “All men are mortal”  Mortal(man), If man(turing) → Mortal(turing)  Predicate logic use two quantifiers  Universal quantifier ,  x, man(x) → mortal(x)  Existential quantifier   Predicate logic sees the world as collections of objects that have properties and relations with other objects; objects are different from each other because they have different properties (such as names). 31

Block II, Unit I, Fundamentals of Symbolic AI 32

Block II, Unit I, Fundamentals of Symbolic AI Semantic networks: they represent a set of entities and relationship between them. The entities can be either objects, collections of objects or concepts. There exits two types 1- definitional networks (define concepts in term of other concepts) 2- assertional networks (describe sets of assertions or propositions) 33

Block II, Unit I, Fundamentals of Symbolic AI  Ovals represent concepts  Asterisk marking the integer oval indicates that this concept is of primitive type  Broad arrows represent subtype  Arrows with a circle represents role 34

Block II, Unit I, Fundamentals of Symbolic AI Reasoning:  A goal can be a single goal: jugs problem  It can be anyone of a huge number of states (chess)  Satisfaction problem: if any valid solution is as good as any other.  Optimization problem: if the objective is not to find ANY solution, but to find a good (or even the best) solution (TSP)  Forward chaining: start from the hypothesis  Backward chaining: start from the potential goal Example: car diagnosis problem. 35

Block II, Unit I, Fundamentals of Symbolic AI Reasoning: 36