Nucleus-nucleus collisions at the future facility in Darmstadt - Compressed Baryonic Matter at GSI Outline:  A future accelerator for intense beams of.

Slides:



Advertisements
Similar presentations
The CBM experiment - exploring the QCD phase diagram at high net baryon densities - Claudia Höhne, GSI Darmstadt CBM collaboration The CBM experiment physics.
Advertisements

The Physics of Dense Nuclear Matter
The Compressed Baryonic Matter Experiment at FAIR Outline:  Physics case  Detector requirements  Feasibility studies  Detector R&D  Outlook Peter.
Silicon Tracker for CBM Walter F.J. Müller, GSI, Darmstadt for the CBM Collaboration Topical Workshop: Advanced Instrumentation for Future Accelerator.
Hadron Physics (I3HP) activities Hadron Physics (I3HP) is part of Integrated Activity of 6’th European Framework. Contract has a form of consortium of.
James Ritman Univ. Giessen PANDA: Experiments to Study the Properties of Charm in Dense Hadronic Matter Overview of the PANDA Pbar-A Program The Pbar Facility.
Feasibility Studies of Low-mass Mesons Identification for the CBM Project Radosław Karabowicz Hot Matter Physics Department, Institute of Physics, Jagiellonian.
Open Charm Everard CORDIER (Heidelberg) Grako meeting HD, April 28, 2006Everard Cordier.
Workshop on Experiments with Antiprotons at the HESR – April 2002, GSI Charmed Hadrons in Matter Introduction Medium Effects in the light quark sector.
Vector meson study for the CBM experiment at FAIR/GSI Anna Kiseleva GSI Germany, PNPI Russia   Motivation   The muon detection system of CBM   Vector.
INTRODUCTION One of the major experimental challenges of the Compressed Baryonic Matter (CBM) experiment is the measurement of the D-meson hadronic decay.
1 J.M. Heuser et al. CBM Silicon Tracker Requirements for the Silicon Tracking System of CBM Johann M. Heuser, M. Deveaux (GSI) C. Müntz, J. Stroth (University.
Development of a RICH detector for electron identification in CBM Claudia Höhne, GSI Darmstadt CBM collaboration Sixth Workshop on Ring Imaging Cherenkov.
Compressed baryonic matter - Experiments at GSI and at FAIR Outline: Probing dense baryonic matter (1-3 ρ 0 )  The nuclear equation-of-state  In medium.
PHENIX Fig1. Phase diagram Subtracted background Subtracted background Red point : foreground Blue point : background Low-mass vector mesons (ω,ρ,φ) ~
Strange particles and neutron stars - experiments at GSI Outline: Probing dense baryonic matter (1-3 ρ 0 )  The nuclear equation-of-state  In medium.
CBM at FAIR Walter F.J. Müller, GSI 5 th BMBF-JINR Workshop, January 2005.
Dec Heavy-ion Meeting ( 홍병식 ) 1 Introduction to CBM Contents - FAIR Project at GSI - CBM at FAIR - Discussion.
The CBM FAIR Volker Friese Gesellschaft für Schwerionenforschung Darmstadt  HI physics at intermediate beam energies  CBM detector concept.
Peter Senger Kolkata Feb. 05 Outline:  Facility of Antiproton and Ion Research  Physics motivation for CBM  Feasibility studies  Experiment layout.
1 Compressed Baryonic Matter at FAIR:JINR participation Hadron Structure 15, 29 th June- 3 th July, 2015 P. Kurilkin on behalf of CBM JINR group VBLHEP,
The Physics of CBM Volker Friese GSI Darmstadt CBM-China Workshop, Beijing, 2 November 2009.
Status of the CBM experiment V. Friese Gesellschaft für Schwerionenforschung Darmstadt, Germany for the CBM Collaboration.
Study of hadron properties in cold nuclear matter with HADES Pavel Tlustý, Nuclear Physics Institute, Řež, Czech Republic for the HADES Collaboration ,
Peter Senger The Compressed Baryonic Matter Experiment at FAIR Critical Point and the Onset of Deconfinement, Florence, July Outline:  The Facility.
1 Plans for JINR participation at FAIR JINR Contributions: ● Accelerator Complex ● Condensed Baryonic Matter ● Antiproton Physics ● Spin Physics Physics.
The CBM experiment at FAIR Claudia Höhne, GSI Darmstadt CBM collaboration Outline motivation, physics case observables experiment feasibility studies dileptons:
In-Kwon YOO Pusan National University Busan, Republic of KOREA SPS Results Review.
CBM at FAIR Walter F.J. Müller, GSI, Darmstadt for the CBM collaboration 5 th International Conference on Physics and Astrophysics of Quark Gluon Plasma,
Charmonium feasibility study F. Guber, E. Karpechev, A.Kurepin, A. Maevskaia Institute for Nuclear Research RAS, Moscow CBM collaboration meeting 11 February.
The Compressed Baryonic Matter Experiment at FAIR Outline:  Physics case  Feasibility studies and Detector R&D  Outlook Peter Senger Seoul, April 21,
Heavy flavour capabilities with the ALICE TRD Benjamin Dönigus ISNP 2008 Erice/Sicily.
Di-electron measurements with HADES at SIS100 Motivation Motivation HADES di-electron results (SIS 18) - summary HADES di-electron results (SIS 18) - summary.
ICPAGQP 2005, Kolkata Probing dense baryonic matter with time-like photons Dilepton spectroscopy from 1 to 40 AGeV at GSI and FAIR Joachim Stroth Univ.
The Compressed Baryonic Matter experiment at FAIR Claudia Höhne, GSI Darmstadt CBM collaboration Outline motivation, physics case observables experiment.
G. Musulmanbekov, K. Gudima, D.Dryablov, V.Geger, E.Litvinenko, V.Voronyuk, M.Kapishin, A.Zinchenko, V.Vasendina Physics Priorities at NICA/MPD.
1 J.M. Heuser − CBM Silicon Tracking System Development of a Silicon Tracking System for the CBM Experiment at FAIR Johann M. Heuser, GSI Darmstadt for.
1 THE MUON DETECTION SYSTEM FOR THE CBM EXPERIMENT AT FAIR/GSI A. Kiseleva Helmholtz International Summer School Dense Matter In Heavy Ion Collisions and.
1 JINR Contribution to the CBM experiment Report at the 5 th Workshop on the Scientific Cooperation Between German Research Centers and JINR, Dubna, January.
A.N.Sissakian, A.S.Sorin Very High Multiplicity Physics Seventh International Workshop JINR, Dubna, September 18, 2007 Status of the project NICA/MPD at.
The FAIR* Project *Facility for Antiproton and Ion Research Outline:  FAIR layout  Research programs Peter Senger, GSI USTC Hefei Nov. 21, 2006 and CCNU.
Di-muon measurements in CBM experiment at FAIR Arun Prakash 1 Partha Pratim Bhadhuri 2 Subhasis Chattopadhyay 2 Bhartendu Kumar Singh 1 (On behalf of CBM.
The Compressed Baryonic Matter Experiment at the Future Facility for Antiproton and Ion Research (FAIR) Outline:  FAIR: future center for nuclear and.
Peter Senger (GSI) The Compressed Baryonic Matter (CBM) experiment at FAIR FAIR Meeting Kiev, March Outline:  Scientific mission  Experimental.
CBM The future of relativistiv heavy-ion physics at GSI V. Friese Gesellschaft für Schwerionenforschung Darmstadt, Germany Tracing the.
CBM Relativistiv heavy-ion physics at FAIR V. Friese Gesellschaft für Schwerionenforschung Darmstadt, Germany The QCD phase diagram : From.
The Compressed Baryonic Matter experiment at the future accelerator facility in Darmstadt Claudia Höhne GSI Darmstadt, Germany.
The Physics of high baryon densities Probing the QCD phase diagram The critical end point Properties of mesons in matter –Baryon density vs. temperature.
Physics with CBM Claudia Höhne, GSI Darmstadt CBM collaboration Outline motivation, physics case observables.
CBM at FAIR Outline:  CBM Physics  Feasibility studies  Detector R&D  Planning, costs, manpower,...
1 Physics of High Baryon Densities - The CBM experiment at FAIR Subhasis Chattopadhyay Variable Energy Cyclotron Centre, Kolkata for the CBM collaboration.
Feasibility of J/ψ studies by MPD detector Alla Maevskaya, Alexei Kurepin INR RAS Moscow NICA Roundtable Workshop 11 September 2009.
The Compressed Baryonic Matter Experiment at FAIR Outline:  The Facility for Antiproton and Ion Research (FAIR)  Compressed Baryonic Matter: the physics.
Possible structures of a neutron star Exploring dense nuclear matter The Compressed Baryonic Matter Experiment atom: m nucleus:
The Compressed Baryonic Matter Experiment at the Future Accelerator Facility in Darmstadt Outline:  Probing dense baryonic matter  Experimental observables.
20/12/2011Christina Anna Dritsa1 Design of the Micro Vertex Detector of the CBM experiment: Development of a detector response model and feasibility studies.
The Compressed Baryonic Matter Experiment at the Future Facility for Antiproton and Ion Research (FAIR) Outline:  Physics: Exploring the QCD phasediagram.
The Compressed Baryonic Matter experiment at FAIR Claudia Höhne, GSI Darmstadt CBM collaboration Outline motivation, physics case observables experiment.
Exploring QCD with Antiprotons PANDA at FAIR M. Hoek on behalf of the PANDA Collaboration IOP Nuclear and Particle Physics Divisional Conference 4-7 April.
Study dileptons (e + e - ) and direct photons fn MPD/NICA NICA Roundetable Workshop IV: Physics at NICA9-12 October In-medium properties of hadrons:
Nu XuDirector’s Review, LBNL, May 17, 20061/23 Future Program for Studying Bulk Properties in High-Energy Nuclear Collisions Nu Xu.
1 - Onset of deconfinement NA60+ - Existence (or non existence) of QCD critical point - Chiral symmetry restoration  Measuring dimuons at different energies.
Mass states of light vector mesons are considered to be sensitive probes of partial chiral symmetry restoration theoretically expected in high energy and/or.
Dilepton measurements in heavy ion collisions: fixed-target versus collider experiments 1. Experimental setups 2. Multiplicities 3. Luminosities 4. Rates.
Multi-Strange Hyperons Triggering at SIS 100
CBM Relativistiv heavy-ion physics at FAIR
A heavy-ion experiment at the future facility at GSI
NA61/SHINE: status and energy scans with Pb+Pb collisions
I. Vassiliev, V. Akishina, I.Kisel and
Perspectives on strangeness physics with the CBM experiment at FAIR
Presentation transcript:

Nucleus-nucleus collisions at the future facility in Darmstadt - Compressed Baryonic Matter at GSI Outline:  A future accelerator for intense beams of (rare) ions and antiprotons  The CBM experiment:  Exploring dense baryonic matter  Observables  Technical challenges and solutions Peter Senger

SIS 100 Tm SIS 300 Tm U: 35 AGeV p: 90 GeV Structure of Nuclei far from Stability Cooled antiproton beam: Hadron Spectroscopy Compressed Baryonic Matter The future international accelerator facility Key features: Generation of intense, high-quality secondary beams of rare isotopes and antiprotons. Two rings: simultaneous beams. Ion and Laser Induced Plasmas: High Energy Density in Matter

The phase diagram of strongly interacting matter CERN-SPS, RHIC, LHC: high temperature, low baryon density AGS, GSI (SIS200): moderate temperature, high baryon density

Probing the Chiral phase transition  B  3-8  0, T  130 MeV Restoration of (spontaneously broken) chiral symmetry Origin of hadron masses ?

The production of dense and/or hot hadronic matter Compression + heating = quark-gluon (pion production) matter neutron stars early universe

High energy Au+Au collisions in transport calculations B. Friman, W. Nörenberg, V.D. Toneev Eur. Phys. J. A3 (1998) 165

Pion multiplicities per participating nucleons

Mapping the QCD phase diagram with heavy-ion collisions  B  6  0  B  0.3  0 baryon density:  B  4 ( mT/2  ) 3/2 x [exp((  B -m)/T) - exp((-  B -m)/T)] baryons - antibaryons Analysis of particle ratios with statistical model: chemical freeze-out P. Braun-Munzinger

CBM physics topics and observables 1. In-medium modifications of hadrons  onset of chiral symmetry restoration at high  B measure: , ,   e + e - open charm (D mesons) 2. Strangeness in matter (strange matter?)  enhanced strangeness production ? measure: K, , , ,  3. Indications for deconfinement at high  B  anomalous charmonium suppression ? measure: J/ , D  softening of EOS measure flow excitation function 4. Critical point  event-by-event fluctuations 5. Color superconductivity  precursor effects at T>T c ? Note: In heavy ion collisions ( , ,  )  e + e - not measured from 2 – 40 AGeV J/  not measured below 158 AGeV D mesons not measured at all

p n  ++  K   e+e+ e-e-  p Looking into the fireball … … using penetrating probes: short-lived vector mesons decaying into electron-positron pairs

Invariant mass of electron-positron pairs from Pb+Au at 40 AGeV CERES Collaboration S. Damjanovic and K. Filimonov, nucl-ex/ ≈185 pairs!

Signatures of the quark-pluon plasma ? Enhanced production of strangeness Anomalous suppression of charmonium (J/  )

Statistical hadron gas model P. Braun-Munzinger et al. Nucl. Phys. A 697 (2002) 902 Experimental situation : Strangeness enhancement ? Experimental situation : Strangeness production in central Au+Au and Pb+Pb collisions New results from NA49

Comparison of experimental data to results of transport codes E.L. Bratkovskaya, W. Cassing, M. van Leeuwen, S. Soff, H. Stöcker, nucl-th/ “Flow generated by extra pressure generated by partonic interactions in the early phase of a central Au+Au/Pb+Pb collision”

Probing quark-gluon matter with charmonium NA50 Collaboration at CERN: J/  (cc)   +  - (6%) M. C. Abreu and the NA50 Collaboration, Phys. Lett. B 477 (2000) 28 Interpretation: Anomalous J/  suppression in central Pb+Pb collisions caused by color screening of cc mesons in quark-gluon matter

Probing the high density fireball with charm production W. Cassing, E. Bratkovskaya, A. Sibirtsev, Nucl. Phys. A 691 (2001) 745

25 AGeV Au+Au 158 AGeV Pb+Pb J/  multiplicity in central collisions 1.5· ·10 -3 beam intensity 2·10 8 /s 2·10 7 /s interactions 8·10 6 /s (4%) 2·10 6 /s (10%) central collisions 8·10 5 /s 2·10 5 /s J/  rate 12/s 200/s 6% J/  e + e - (  +  - ) 0.7/s 12/s spill fraction acceptance 0.25  0.1 J/  measured 0.14/s  0.3/s  8·10 4 /week  1.8·10 5 /week J/  experiments: a count rate estimate E lab [GeV]

Hadrons in the nuclear medium

SIS18 SIS300 SIS18: strangeness production at threshold  probing in-medium properties at  = 1 -3  0 SIS300: charm production near threshold  probing in-medium properties at  =  0 Meson production in central Au+Au collisions W. Cassing, E. Bratkovskaya, A. Sibirtsev, Nucl. Phys. A 691 (2001) 745

Charmed mesons Some hadronic decay modes D  (c  = 317  m): D +  K 0  + (2.9  0.26%) D +  K -  +  + (9  0.6%) D 0 (c  =  m): D 0  K -  + (3.9  0.09%) D 0  K -  +  +  - (7.6  0.4%) experimental challenges: low production cross section large combinatorial background measure displaced vertex with resolution of  30  m D meson production in pN collisions

The critical point gas liquid coexistence Below T c : 1. order phase transition above T c : no phase boundary At the critical point: Large density fluctuations, critical opalescence Event-by-event analysis by NA49: 5% most central Pb+Pb collisions at 158 AGeV Purely statistical fluctuations !

Produce high baryon densities in heavy ion collisions at 4 – 40 AGeV. Build an universal experiment which measures simultaneously both hadrons and electrons: , K, , , , p, , , , , D, J/  (multiplicities, phase-space distributions, centrality, reaction plane). Perform systematic measurements using a dedicated accelerator: High beam intensity and duty cycle, Excellent beam quality, High availability Our approach towards the study of superdense baryonic matter

-- ++ p 25 AGeV central collision URQMD event, GEANT simulation: B = 1 T 160 p 400   + 44 K + 13 K -

Experimental challenges  beam intensities up to 10 9 ions/sec, 1 % interaction target: 10 7 Au+Au reactions/sec (1000 charged particles in central Au+Au collisions at 25 AGeV)  determination of (displaced) vertices with high resolution (  30  m)  identification of electrons and hadrons Silicon: 7 planes, 3 Mio pixel, 1.5 Mio strips Experimental concept  Radiation hard Silicon pixel/strip detectors in a magnetic dipole field  2 electron detectors: pion suppression by  Particle identification: TOF, RICH  Electromagnetic calorimeter  High speed data acquisition and trigger system

Silicon tracker in B field: tracking, momentum RICH1 (   30): electrons RICH2: high-momentum pions (  3-4 GeV/c) TRDs: tracking, electrons (   2000): RPC: particle identification via TOF, kaon-pion separation up to 3-4 GeV/c ECAL: electrons, gammas,  0,  0 The CBM Experiment

Central Au+Au collision at 25 AGeV: URQMD + GEANT4 160 p 400   + 44 K + 13 K -

CBM R&D Collaboration : 35 institutions Croatia: RBI, Zagreb Cyprus: Nikosia Univ. Czech Republic: Czech Acad. Science, Rez Techn. Univ. Prague France: IReS Strasbourg Germany: Univ. Heidelberg, Phys. Inst. Univ. HD, Kirchhoff Inst. Univ. Frankfurt Univ. Mannheim Univ. Münster FZ Rossendorf GSI Darmstadt Russia: CKBM, St. Petersburg IHEP Protvino INR Troitzk ITEP Moscow KRI, St. Petersburg Kurchatov Inst., Moscow LHE, JINR Dubna LPP, JINR Dubna SINP, Moscow State Univ. Spain: Santiago de Compostela Univ. Ukraine: Shevshenko Univ., Kiev USA: LBNL Berkeley Hungaria: KFKI Budapest Eötvös Univ. Budapest Italy: INFN Catania INFN Frascati Korea: Korea Univ. Seoul Pusan Univ. Poland: Krakow Univ. Warsaw Univ. Silesia Univ. Katowice Portugal: LIP Coimbra Romania: NIPNE Bucharest

R&D working packages Feasibility, Simulations D  Kπ(π) GSI Darmstadt, Czech Acad. Sci., Rez Techn. Univ. Prague ,ω,   e + e - Univ. Krakow JINR-LHE Dubna J/ψ  e + e - INR Moscow Hadron ID Heidelberg Univ, Warsaw Univ. Kiev Univ. NIPNE Bucharest INR Moscow GEANT4: GSI Tracking KIP Univ. Heidelberg Univ. Mannheim JINR-LHE Dubna Design & construction of detectors Silicon Pixel IReS Strasbourg Frankfurt Univ., GSI Darmstadt, RBI Zagreb, Krakow Univ. LBNL Berkeley Silicon Strip SINP Moscow State U. CKBM St. Petersburg KRI St. Petersburg RPC-TOF LIP Coimbra, Univ. S. de Compostela, Univ. Heidelberg, GSI Darmstadt, NIPNE Bucharest INR Moscow FZ Rossendorf IHEP Protvino ITEP Moscow Fast TRD JINR-LHE, Dubna GSI Darmstadt, Univ. Münster INFN Frascati Straw tubes JINR-LPP, Dubna FZ Rossendorf FZ Jülich ECAL ITEP Moscow RICH IHEP Protvino Trigger, DAQ KIP Univ. Heidelberg Univ. Mannheim GSI Darmstadt KFKI Budapest Silesia Univ. Magnet JINR-LHE, Dubna GSI Darmstadt Analysis GSI Darmstadt, Heidelberg Univ, Data Acquis., Analysis

Project cost (M€) Total: 675 Buildings: SIS100: 70.1 SIS200: 39.6 Coll. Ring: 45.0 NESR: 40.0 HESR: 45.0 e-ring: 15.0 Beamlines: 21.0 Cryo, etc: 44.1 SFRS: 40.7 CBM: 27.0 AP: 8.7 Plasma phys.: 8.0 p-linac: 10.0 PANDA: 28.4 pbar targ.: 6.9 Project evolution Oct. 2000: 1. International Workshop on a future accelerator facility Oct : Submission of the Conceptual Design Report Nov. 2002: Positive evaluation report of the German science council Feb. 2003: Project approved by the German federal government (170 M€ foreign contributions requested) Oct. 2003: 2. International Workshop on the future accelerator facility Spring 2004: Letters of intent In 2004: New GSI structure

SIS18 Upgrade 70 MW Connection Proton-Linac TDM # SIS100 Transfer Line SIS18-SIS100 High Energy Beam Lines RIB Prod.-Target, Super-FRS RIB High+Low Energy Branch Antiproton Prod.-Target CR-Complex HESR & 4 MV e - –Cooling NESR SIS200* 8 MV e - –Cooling e-A Collider SIS100/200 Tunnel, SIS Injection+Extraction+Transfer Transfer Buildings/Line Super-FRS, Auxiliary Bldgs., Transfer Tunnel to SIS18, Building APT, Super-FRS, CR-Complex RIB High+Low Energy Branch, HESR ( ground level), NESR, AP-cave, e-A Collider, PP-cave CBM-Cave, Pbar-Cave, Reinjection SIS100 Civil Construction Civil Construction 1 Civil Construction 3 Civil Construction 2 Civil Construction 4 I IV III V II Concept for staged Construction of the International Facility for Beams of Ions and Antiprotons 2,7x10 11 /s 238 U 28+ (200 MeV/u) 5x10 12 protons per puls 1x10 11 /s 238 U 28+ ( GeV/u) ->RIB (50% duty cycle) 2.5x10 13 p (1-30 GeV) 3-30 GeV pbar->fixed target 10.7 GeV/u 238 U -> HADES* 1x10 12 /s 238 U % duty cycle pbar cooled p (1-90 GeV) 35 GeV/u 238 U 92+ NESR physics plasma physics Experiment Potential # Construction Tunnel Drilling Machine General Planning Civil ConstructionProduction and Installation *SIS200 installation during SIS100 shut down

Kopenhagen Titel 1 min 2.Anlage 2 3.phasediagram 1 4.Hot dense matter 2 5.qq condensate 1 6.Filme 2 7.Pionen Excitation 1 8.Transport 1 9.Phasendiagramm 2 10.Observable 2 11.Dilepton Sonde CERES Daten 1 13.QGP NA Transport 1 16.cc production 1 20 min 17.J/psi Vergleich 1 18.Inmedium K, D 1 19.Excitation HSD 1 20.Excit. D-mesons 1 21.Requirements 1 22.CBM CBM URQMD 1 25.Collaboration 1 26.Working packages 1 27.Costs 1 28.Schedule 1 29.Workshop 0 Summe 13

International Accelerator Facility for beams of Ions and Antiprotons

Radiation-hard silicon pixel detectors (LHC development) Idea: identify prompt dimuon pairs and those from decaying D-Dbar pairs by precise vertex-determination Upgrade of NA50 at CERN-SPS: indirect measurement of D-mesons 10 planes 88 pixel readout chips channels pixel size : 50  425  m 2

HADES CBM The nuclear reaction experiment at the future facility at GSI A+A at 2-8 AGeV A+A at 8-40 AGeV

The nuclear reaction experiment at the future facility at GSI CBM ECAL

25 AGeV central collision URQMD event, GEANT simulation: B = 1 T 160 p 400   + 44 K + 13 K - -- p ++

midrapidity 80% 60% incl. decay 67% incl. decay 20% 30% Acceptance Au+Au 25 AGeV URQMD event, GEANT simulation

J/  (x10 5 )  e + e -  0  e + e - counts  (x10 -4 ) cut: p T  1 GeV/c e +, e - opening angle   J/  (x10 5 ) counts  e +, e - transverse momentum cut:   10 o

without cuts (incl. misident. pions) with cuts: p t (e +,e - ) > 1 GeV/c,  lab  25 o,  > 10 o  e + e -  e + e - J/  e + e - N J/  = 1.6 DD  e + e - +X  e + e - counts sum Au+Au 25 AGeV: e + e - invariant mass spectra PLUTO simulations: 10 Mio. events signal/background  10

Simulations on open charm detection: D 0  + K - performed by V. Friese (GSI) Assumptions: Au+Au at 25 AGeV ( : 328  +, 13 K - ) Perfect track finding Perfect particle identification No magnetic field Silicon detector thickness 100  m Tools: URQMD event generator GEANT4 transport code ROOT data analysis

D0D0 ++ ++ K-K- K-K- p  + p K bb bKbK Lab CM pair vzvz ** Suppression of combinatorial background by the following cuts:  invariant mass window m D = 1864  25 MeV  displaced decay vertex v z > 0  back to back emission in c.m. system (  * = 180 o )  impactparameter b pair = b  b K  colinearity of D and decay products (momentum vectors) Identification of D-mesons (open charm) Example: D 0  K -  +

Displaced decay vertex D 0  K -  + signal background S/B Vertex resolution:  vz = 19  m Cut : v z > 0,3 mm Cut-efficiency: Signal: 58.0 % background :2.7 x 10 -4

Impact parameters of K - and  + at z=0 b pair = b K x b  Cut : b pair < -0,004 mm 2 Cut-efficiency: Signal: 90.3 % background: 23.7 % signal background

Colinearity (pointing angle) Cut :  p < 5º Cut-efficiency: Signal: 99.9 % Background : 12.5 % signal background

Total efficiency: Signal: 48.4 % background : 5 x Sensitivity : For = (HSD-Model) und  m = 10 MeV: 3  -limit reached at 1,6 x 10 6 events Signal/Background 1.8 At a reaction rate of 1 MHz (Au+Au central collisions): D 0 detection rate (incl. branching ratio): / h Efficiencies, sensitivity and rates