Hybrid Simulations of Energetic Particle-driven Instabilities in Toroidal Plasmas Guo-Yong Fu In collaboration with J. Breslau, J. Chen, E. Fredrickson,

Slides:



Advertisements
Similar presentations
EXTENDED MHD SIMULATIONS: VISION AND STATUS D. D. Schnack and the NIMROD and M3D Teams Center for Extended Magnetohydrodynamic Modeling PSACI/SciDAC.
Advertisements

Lecture Series in Energetic Particle Physics of Fusion Plasmas Guoyong Fu Princeton Plasma Physics Laboratory Princeton University Princeton, NJ 08543,
West Lake International Symposium on Plasma Simulation; April, 2012 Influence of magnetic configuration on kinetic damping of the resistive wall.
Halo Current and Resistive Wall Simulations of ITER H.R. Strauss 1, Linjin Zheng 2, M. Kotschenreuther 2, W.Park 3, S. Jardin 3, J. Breslau 3, A.Pletzer.
TAE-EP Interaction in ARIES ACT-I K. Ghantous, N.N Gorelenkov PPPL ARIES Project Meeting,, 26 Sept
Momentum Transport During Reconnection Events in the MST Reversed Field Pinch Alexey Kuritsyn In collaboration with A.F. Almagri, D.L. Brower, W.X. Ding,
A Kinetic-Fluid Model for Studying Thermal and Fast Particle Kinetic Effects on MHD Instabilities C. Z. Cheng, N. Gorelenkov and E. Belova Princeton Plasma.
6 th ITPA MHD Topical Group Meeting combined with W60 IEA Workshop on Burning Plasmas Session II MHD Stability and Fast Particle Confinement General scope.
Nonlinear Simulations of ELMs with NIMROD D.P. Brennan Massachussetts Institute of Technology Cambridge, MA S.E. Kruger Tech-X Corp, Boulder, CO A. Pankin,
Lecture Series in Energetic Particle Physics of Fusion Plasmas
Energetic Particle Physics in Tokamak Plasmas Guoyong Fu Princeton Plasma Physics Laboratory Princeton University Princeton, NJ 08543, USA 6 th Workshop.
INTRODUCTION OF WAVE-PARTICLE RESONANCE IN TOKAMAKS J.Q. Dong Southwestern Institute of Physics Chengdu, China International School on Plasma Turbulence.
Discussion on application of current hole towards reactor T.Ozeki (JAERI) Current hole plasmas were observed in the large tokamaks of JT-60U and JET. This.
MAST M Gryaznevich. EPD MHD in STs. 8th IAEA TM on EP. 6-8 Oct. 2003, San Diego, USA Energetic Particle Driven MHD in Spherical Tokamaks. M Gryaznevich.
E.D. Fredrickson, a W.W. Heidbrink, b C.Z. Cheng, a N.N. Gorelenkov, a E. Belova, a A.W. Hyatt, c G.J. Kramer, a J. Manickam, a J. Menard, a R. Nazikian,
Fast ion effects on fishbones and n=1 kinks in JET simulated by a non-perturbative NOVA-KN code TH/5-2Rb N.N. Gorelenkov 1), C.Z.Cheng 1), V.G. Kiptily.
F. Nabais - Vilamoura - November 2004 Internal kink mode stability in the presence of ICRH driven fast ions populations F. Nabais, D. Borba, M. Mantsinen,
Fast Ion Driven Instabilities on NSTX E.D. Fredrickson, C.Z. Cheng, D. Darrow, G. Fu, N.N. Gorelenkov, G Kramer, S S Medley, J. Menard, L Roquemore, D.
TH/3-1Ra Nonperturbative Effects of Energetic Ions on Alfvén Eigenmodes by Y. Todo et al. EX/5-4Rb Configuration Dependence of Energetic Ion Driven Alfven.
GSEP 3 rd Annual Project Meeting Zhihong Lin & US DOE SciDAC GSEP Team 8/9-8/10, 2010, GA.
D. Borba 1 21 st IAEA Fusion Energy Conference, Chengdu China 21 st October 2006 Excitation of Alfvén eigenmodes with sub-Alfvénic neutral beam ions in.
Computer simulations of fast frequency sweeping mode in JT-60U and fishbone instability Y. Todo (NIFS) Y. Shiozaki (Graduate Univ. Advanced Studies) K.
Massively Parallel Magnetohydrodynamics on the Cray XT3 Joshua Breslau and Jin Chen Princeton Plasma Physics Laboratory Cray XT3 Technical Workshop Nashville,
SIMULATION OF A HIGH-  DISRUPTION IN DIII-D SHOT #87009 S. E. Kruger and D. D. Schnack Science Applications International Corp. San Diego, CA USA.
Nonlinear Frequency Chirping of Alfven Eigenmode in Toroidal Plasmas Huasen Zhang 1,2 1 Fusion Simulation Center, Peking University, Beijing , China.
6 th Japan-Korea Workshop on Theory and Simulation of Magnetic Fusion Plasmas Hyunsun Han, G. Park, Sumin Yi, and J.Y. Kim 3D MHD SIMULATIONS.
Kinetic Effects on the Linear and Nonlinear Stability Properties of Field- Reversed Configurations E. V. Belova PPPL 2003 APS DPP Meeting, October 2003.
JT-60U Resistive Wall Mode (RWM) Study on JT-60U Go Matsunaga 松永 剛 Japan Atomic Energy Agency, Naka, Japan JSPS-CAS Core University Program 2008 in ASIPP.
J A Snipes, 6 th ITPA MHD Topical Group Meeting, Tarragona, Spain 4 – 6 July 2005 TAE Damping Rates on Alcator C-Mod Compared with Nova-K J A Snipes *,
Overview of MHD and extended MHD simulations of fusion plasmas Guo-Yong Fu Princeton Plasma Physics Laboratory Princeton, New Jersey, USA Workshop on ITER.
TH/7-2 Radial Localization of Alfven Eigenmodes and Zonal Field Generation Z. Lin University of California, Irvine Fusion Simulation Center, Peking University.
Particle Distribution Modification by TAE mode and Resonant Particle Orbits POSTECH 1, NFRI 1,2 M.H.Woo 1, C.M.Ryu 1, T.N.Rhee 1,,2.
Challenging problems in kinetic simulation of turbulence and transport in tokamaks Yang Chen Center for Integrated Plasma Studies University of Colorado.
HAGIS Code Lynton Appel … on behalf of Simon Pinches and the HAGIS users CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority.
Modeling Beam Ion Relaxation with application to DIII-D K.Ghantous, N.N. Gorelenkov PPPL, 2012.
Summary of MHD Topics 2nd IAEA Technical Meeting Theory of Plasma Instabilities Howard Wilson.
Lecture Series in Energetic Particle Physics of Fusion Plasmas
Stability Properties of Field-Reversed Configurations (FRC) E. V. Belova PPPL 2003 International Sherwood Fusion Theory Conference Corpus Christi, TX,
Fast Ion Losses in Toroidal Alfvén Eigenmode Avalanches in NSTX E. D. Fredrickson, N. A. Crocker 1, D. Darrow, N. N. Gorelenkov, W. W. Heidbrink 2, G.
PEPSC Plan for Self-consistent Simulations of Fast Ion Transport with Source and Sink Guoyong Fu Princeton Plasma Physics Laboratory.
DIII-D SHOT #87009 Observes a Plasma Disruption During Neutral Beam Heating At High Plasma Beta Callen et.al, Phys. Plasmas 6, 2963 (1999) Rapid loss of.
NSTX APS DPP 2008 – RWM Stabilization in NSTX (Berkery)November 19, Resistive Wall Mode stabilization in NSTX may be explained by kinetic theory.
(National Institute for Fusion Science, Japan)
Hybrid MHD-Gyrokinetic Simulations for Fusion Reseach G. Vlad, S. Briguglio, G. Fogaccia Associazione EURATOM-ENEA, Frascati, (Rome) Italy Introduction.
Lecture Series in Energetic Particle Physics of Fusion Plasmas Guoyong Fu Princeton Plasma Physics Laboratory Princeton University Princeton, NJ 08543,
STUDIES OF NONLINEAR RESISTIVE AND EXTENDED MHD IN ADVANCED TOKAMAKS USING THE NIMROD CODE D. D. Schnack*, T. A. Gianakon**, S. E. Kruger*, and A. Tarditi*
Beam Voltage Threshold for Excitation of Compressional Alfvén Modes E D Fredrickson, J Menard, N Gorelenkov, S Kubota*, D Smith Princeton Plasma Physics.
1 A Proposal for a SWIM Slow-MHD 3D Coupled Calculation of the Sawtooth Cycle in the Presence of Energetic Particles Josh Breslau Guo-Yong Fu S. C. Jardin.
1 Stability Studies Plans (FY11) E. Fredrickson, For the NCSX Team NCSX Research Forum Dec. 7, 2006 NCSX.
D. A. Spong Oak Ridge National Laboratory collaborations acknowledged with: J. F. Lyon, S. P. Hirshman, L. A. Berry, A. Weller (IPP), R. Sanchez (Univ.
Summary of IAEA Theory Papers on Energetic Particle Physics Guoyong Fu.
Simulations of NBI-driven Global Alfven Eigenmodes in NSTX E. V. Belova, N. N. Gorelenkov, C. Z. Cheng (PPPL) NSTX Results Forum, PPPL July 2006 Motivation:
Using microwaves to study fast ion driven modes in NSTX N.A. Crocker, S. Kubota, W.A. Peebles, G. Wang, T. Carter (UCLA); E.D. Fredrickson, B.P. LeBlanc,
BOUT++ Towards an MHD Simulation of ELMs B. Dudson and H.R. Wilson Department of Physics, University of York M.Umansky and X.Xu Lawrence Livermore National.
Helically Symmetry Configuration Evidence for Alfvénic Fluctuations in Quasi-Helically Symmetric HSX Plasmas C. Deng and D.L. Brower, University of California,
Simulations of Energetic Particle Modes In Spherical Torus G.Y. Fu, J. Breslau, J. Chen, E. Fredrickson, S. Jardin, W. Park Princeton Plasma Physics Laboratory.
Nonlinear Simulations of Energetic Particle-driven Modes in Tokamaks Guoyong Fu Princeton Plasma Physics Laboratory Princeton, NJ, USA In collaboration.
Kinetic-Fluid Model for Modeling Fast Ion Driven Instabilities C. Z. Cheng, N. Gorelenkov and E. Belova Princeton Plasma Physics Laboratory Princeton University.
Energetic Particles Interaction with the Non-resonant Internal Kink in Spherical Tokamaks Feng Wang*, G.Y. Fu**, J.A. Breslau**, E.D. Fredrickson**, J.Y.
Resistive Modes in CDX-U J. Breslau, W. Park. S. Jardin, R. Kaita – PPPL D. Schnack, S. Kruger – SAIC APS-DPP Annual Meeting Albuquerque, NM October 30,
TH/7-1Multi-phase Simulation of Alfvén Eigenmodes and Fast Ion Distribution Flattening in DIII-D Experiment Y. Todo (NIFS, SOKENDAI) M. A. Van Zeeland.
6 th ITPA MHD Topical Group Meeting combined with W60 IEA Workshop on Burning Plasmas Summary Session II MHD Stability and Fast Particle Confinement chaired.
Energetic ion excited long-lasting “sword” modes in tokamak plasmas with low magnetic shear Speaker:RuiBin Zhang Advisor:Xiaogang Wang School of Physics,
M. Fitzgerald, S.E. Sharapov, P. Rodrigues2, D. Borba2
Huishan Cai, Jintao Cao, Ding Li
8th IAEA Technical Meeting on
Influence of energetic ions on neoclassical tearing modes
27th IAEA Fusion Energy Conference, October 2018, Gandhinagar, India
Stabilization of m/n=1/1 fishbone by ECRH
Simulations of energetic particle driven instabilities and fast particle redistribution in EAST tokamak Fishbone simulation by M3D-K: The simulation results.
Presentation transcript:

Hybrid Simulations of Energetic Particle-driven Instabilities in Toroidal Plasmas Guo-Yong Fu In collaboration with J. Breslau, J. Chen, E. Fredrickson, S. Jardin, W. Park, H.R. Strauss (NYU), L.E. Sugiyama (MIT) 8th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems 6-8 October 2003, San Diego, California, USA

Outline Introduction M3D code: hybrid model, code development Examples of M3D Hybrid Simulations NBI-driven TAEs in NSTX Summary Future Work

Introduction We investigate energetic particle-driven MHD modes in tokamaks and stellarators by particle/MHD hybrid simulations; Our main tool, M3D, is a 3D global nonlinear extended MHD code. Our goal is to understand the alpha particle-driven MHD instabilities in a burning plasma and predict their effects on alpha heating and particle loss. This talk reports progress towards this goal: code development, NBI-driven Alfven modes etc.

Motivation In a toroidal plasma (tokama/stellarator), energetic particles with velocity comparable to Alfven phase speed can resonantly destabilize MHD modes such as TAE and CAE, they can also induce/excite new modes such as fishbone or Energetic Particle Mode(EPM). In a magnetic fusion reactor, alpha particle-driven MHD modes can results in alpha particle loss and change alpha heating profile. Key issues of alpha physics are alpha effects on sawteeth and alpha particle transport due to multiple Alfven modes.

M3D code M3D project is part of SciDAC’s CEMM: Center for Extended MHD Modeling M3D is an extended-MHD (XMHD) code which has multi-level of physics: Resistive MHD; Two fluids; Particle/MHD hybrid

M3D XMHD Model

M3D Hybrid Code Development extended to general 3D geometry valid for stellarators; massively parallelized via MPI; benchmarked against NOVA-K code.

M3D hybrid code has been extended to unstructured mesh valid for 3D geometry

M3D hybrid code has been parallelized using either MPI or OpenMP 512 poloidal planes 7321 mesh points 32 million particles 1 node = 16 processors

Examples of M3D Hybrid Simulations Fishbone instability; ITER: Alpha particle effects on n=1 kink TAE in stellarators.

Hot Particle-induced Fishbone Instability circular tokamak R/a=2.76 q(0)=0.6, q(a)=2.4  _total(0) = 8% v_h/v_A = 1.0,  h/a=0.05 Isotropic slowing-down hot particle distribution

Mode Structure: Ideal Kink v.s. Fishbone

ITER: alpha particle effects are not sufficient to stabilize n=1 internal kink mode

Fast Ion-driven TAE in a Quasi-symmetric stellarator

TAE mode structure: tokamak v.s. stellarator

Simulations of Beam-driven Alfven Modes in NSTX Recent NSTX experimental observations show rich beam-driven instabilities: fishbone, TAEs, CAEs etc and associated hot particle losses. Alfven modes in STs are less understood as compared to those in conventional tokamaks. Need to study possible new features of beam- driven Alfven modes associated with ST’s unique parameter regime: low aspect ratio, high beta, large energetic ion speed and gyroradius.

The bursting modes are in the TAE frequency range (NSTX) Multiple modes burst at the same time. Toroidal mode number, n, ranges from with the dominant mode being n=2 or 3. Mode frequencies in reasonable agreement with expected TAE frequencies. E. Fredrickson

The final mode growth and decay is very fast Some of the mode amplitude modulation represents "beating" of the multiple modes. Mode growth and decay times are approximately  s. E. Fredrickson

NSTX Parameters and Profiles NSTX shot # at t=0.267sec: R=87cm, a=63cm, B=0.43T, n e (0)=2.5e13, Ti=1.7kev, Te=1.4kev; q(0)=1.82, q(a)=12.9, weakly reversed;  (0)=21%,  beam (0)=13%; v beam /v Alfven = 2.1,  beam /a =0.17

q profile

Pressure Profiles: P thermal and P beam

Beam Particle Distribution (1)isotropic distribution; (2)anisotropic distribution.

The simulation of an NSTX plasma show unstable TAEs consistent with observations NSTX shot # at t=0.267sec; The calculated n=2 TAE mode frequency is 73 kHz which is close to the experimental value of 70 kHz (assuming 15kHz toroidal rotation)

N=1, 2 & 3 Modes in NSTX

Nonlinear Evolution of n=2 TAE: Mode Saturation and Frequency Chirping

Mode Moving Out After Saturation

n=2 Mode Structure: Isotropic v.s. Anisotropic distribution

Multiple Mode Simulations (n=1~4) t=139 t=180t=220t=270

Summary M3D hybrid code has been extended to general 3D geometry and massively parallelized. Simulations of NBI-heated NSTX plasmas show unstable TAEs with frequencies consistent with experimental observations. Initial nonlinear simulations show that the n=2 TAE mode moves out radially and its frequency chirps down during saturation.

Future Work Simulations of NBI-driven TAE in NSTX for more realistic distributions; Improve M3D for simulations of alpha-driven high-n Alfven modes in burning plasmas: code speed, time step, more physics such as particle collision etc.