Development and Applications of the Timepix3 chip

Slides:



Advertisements
Similar presentations
TDC130: High performance Time to Digital Converter in 130 nm
Advertisements

End of Column Circuits Sakari Tiuraniemi - CERN. EOC Architecture 45 9 Ref CLK 40 MHz DLL 32-bit TDC bank address RX 5 TDC bank address RX 5 TDC bank.
A. Kluge January 25, Aug 27, 2012 Outline NA62 NA62 Specifications Specifications Architecture Architecture A. Kluge2.
STATUS OF MEDIPIX-3, PLANS FOR TIMEPIX-2 X. Llopart.
A scalable DAQ system using the DRS4 sampling chip H.Friederich 1, G.Davatz 1, U.Hartmann 2, A.Howard 1, H.Meyer 1, D.Murer 1, S.Ritt 2, N.Schlumpf 2 1.
Mid-IR photon counting array using HgCdTe APDs and the Medipix2 ROIC
Large Area, High Speed Photo-detectors Readout Jean-Francois Genat + On behalf and with the help of Herve Grabas +, Samuel Meehan +, Eric Oberla +, Fukun.
5ns Peaking Time Transimpedance Front End Amplifier for the Silicon Pixel Detector in the NA62 Gigatracker E. Martin a,b J. Kaplon b, A. Ceccucci b, P.
NA62 front end Layout in DM option Jan Kaplon/Pierre Jarron.
NA62 front end architecture and performance Jan Kaplon/Pierre Jarron.
GOSSIPO-2 chip: a prototype of read-out pixel array featuring high resolution TDC-per-pixel architecture. Vladimir Gromov, Ruud Kluit, Harry van der Graaf.
Timepix2 power pulsing and future developments X. Llopart 17 th March 2011.
Power pulsing strategy with Timepix2 X. Llopart 10 th May 2011 Linear Collider Power Distribution and Pulsing workshop Timepix3.
Evaluation of 65nm technology for front-end electronics in HEP Pierpaolo Valerio 1 Pierpaolo Valerio -
MEDIPIX3 TESTING STATUS R. Ballabriga and X. Llopart.
A multi-chip board for X-ray imaging in build-up technology Alessandro Fornaini, NIKHEF, Amsterdam 4 th International Workshop on Radiation Imaging Detectors.
Development of a 20 GS/s Sampling Chip in 130nm CMOS Technology Jean-Francois Genat On behalf of Mircea Bogdan 1, Henry J. Frisch 1, Herve Grabas 3, Mary.
TOF Electronics Qi An Fast Electronics Lab, USTC Sept. 16~17, 2002.
Pierpaolo Valerio.  CLICpix is a hybrid pixel detector to be used as the CLIC vertex detector  Main features: ◦ small pixel pitch (25 μm), ◦ Simultaneous.
Erik HEIJNE CERN PH DepartmentRADWORKSHOP 29 November 2005 MEDIPIX2 for VERY LOW DOSE INITIAL LHC BENCHMARKING MEDIPIX2 for VERY LOW DOSE INITIAL LHC BENCHMARKING.
FEE2006, Perugia Simultaneous Photon Counting and Charge Integrating Readout Electronics for X-ray Imaging Hans Krüger, University of Bonn, Germany University.
*on behalf of the Medipx3, Timepix2 and VELOpix design teams
Phase-1 Design. i PHC Phase /04/2008 System Overview Clock, JTAG, sync marker and power supply connections Digital output.
The design of the TimePix chip Xavier Llopart, CERN MPI-Munich, October 2006.
Gossipo-3: a prototype of a Front-end Pixel Chip for Read-out of Micro-Pattern Gas Detectors. TWEPP-09, Paris, France. September 22, Christoph Brezina.
1 Development of the input circuit for GOSSIP vertex detector in 0.13 μm CMOS technology. Vladimir Gromov, Ruud Kluit, Harry van der Graaf. NIKHEF, Amsterdam,
Update on CLICpix design
The DRS2 Chip: A 4.5 GHz Waveform Digitizing Chip for the MEG Experiment Stefan Ritt Paul Scherrer Institute, Switzerland.
Pixel Readout Electronics - from HEP to imaging to HEP… Status, requirements, new ideas M. Campbell, R. Ballabriga, E. Heijne, X. Llopart, L. Tlustos,
Power Pulsing in Timepix3 X. Llopart CLIC Workshop, January
Design of the Timepix2 X. Llopart 25 th May th International Meeting on Front-End Electronics Timepix3.
65 nm CMOS analog front-end for pixel detectors at the HL-LHC
ClicPix ideas and a first specification draft P. Valerio.
A view on electronics for the prototype of the GOSSIP detector in 0.13um CMOS Technology. Vladimir Gromov Electronics Technology NIKHEF, Amsterdam, the.
Thanushan Kugathasan, CERN Plans on ALPIDE development 02/12/2014, CERN.
1 TimePix-2 a new and fast general-purpose MPGD readout pixel chip Jan Timmermans, Nikhef MPGD/RD-51 Workshop Nikhef, Amsterdam The Netherlands April 16,
VeloPix ASIC 7 November 2013 Xavi Llopart, Tuomas Poikela, Massimiliano De Gaspari, Ken Wyllie, Jan Buytaert, Michael Campbell, Vladimir Gromov, Vladimir.
Design of the Timepix3 X. Llopart 7 th July 2011 LCTPC collaboration meeting.
CLICPIX AND MEDIPIX3-TSV PROJECTS Pierpaolo Valerio.
Progress with GaAs Pixel Detectors K.M.Smith University of Glasgow Acknowledgements: RD8 & RD19 (CERN Detector R.&D. collaboration) XIMAGE (Aixtron, I.M.C.,
Click to edit Master subtitle style Presented By Mythreyi Nethi HINP16C.
M. TWEPP071 MAPS read-out electronics for Vertex Detectors (ILC) A low power and low signal 4 bit 50 MS/s double sampling pipelined ADC M.
Development of a Front-end Pixel Chip for Readout of Micro-Pattern Gas Detectors. Vladimir Gromov, Ruud Kluit, Harry van der Graaf. NIKHEF, Amsterdam,
CERN PH MIC group P. Jarron 07 November 06 GIGATRACKER Meeting Gigatracker Front end based on ultra fast NINO circuit P. Jarron, G. Anelli, F. Anghinolfi,
CBM 12 th Meeting, October 14-18, 2008, Dubna Present status of the first version of NIHAM TRD-FEE analogic CHIP Vasile Catanescu and Mihai Petrovici NIHAM.
R. Kluit Nikhef Amsterdam R. Kluit Nikhef Amsterdam Gossopo3 3 rd Prototype of a front-end chip for 3D MPGD 1/27/20091GOSSIPPO3 prototype.
TIMEPIX2 FE STUDIES X. Llopart. Summary of work done During summer I have been looking at a possible front end for Timepix2 The baseline schematic is.
Medipix3 chip, downscaled feature sizes, noise and timing resolution of the front-end Rafael Ballabriga 17 June 2010.
Technical status of the Gossipo-3 : starting point for the design of the Timepix-2 March 10, Vladimir Gromov NIKHEF, Amsterdam, the Netherlands.
First measurements of the Gossipo-3 CERN, Geneve March 24, Vladimir Gromov NIKHEF, Amsterdam, the Netherlands.
NEWS FROM MEDIPIX3 MEASUREMENTS AND IMPACT ON TIMEPIX2 X. Llopart CERN.
Pixel structure in Timepix2 : practical limitations June 15, Vladimir Gromov NIKHEF, Amsterdam, the Netherlands.
1/10Lucie Linssen TPC pad readout meeting Orsay May 10 th 2011 Beam structure, occupancies, time-stamping for TPC pad readout at CLIC Lucie Linssen, CERN.
Vladimir Gromov, NIKHEF, Amsterdam. GOSSIPO-3 Working Group February 03, Local Oscillator in the GOSSIPO-3 readout chip.
Pixel Sensors for the Mu3e Detector Dirk Wiedner on behalf of Mu3e February Dirk Wiedner PSI 2/15.
P. Name Nikhef Amsterdam Electronics- Technology Vladimir Gromov, NIKHEF, Amsterdam. GOSSIPO-3 Meeting March 31, More on the Preamplifier.
GOSSIPO-3: Measurements on the Prototype of a Read- Out Pixel Chip for Micro- Pattern Gas Detectors André Kruth 1, Christoph Brezina 1, Sinan Celik 2,
A Low-noise Front-end ASIC design based on TOT technique for Read-out of Micro-Pattern Gas Detectors Huaishen Li, Na Wang, Wei Lai, Xiaoshan Jiang 1 State.
e- and h+ (with leakage current compensation up to ~2nA/pixel)
R. Kluit Nikhef Amsterdam R. Kluit Nikhef Amsterdam Gossipo3 3 rd Prototype of a front-end chip for 3D MPGD 1/27/20091GOSSIPO3 prototype.
Progress with GaAs Pixel Detectors
Journées VLSI-FPGA-PCB Juin 2010 Xiaochao Fang
Charge sensitive amplifier
LHC1 & COOP September 1995 Report
Digital readout architecture for Velopix
Development of a low power
Status of n-XYTER read-out chain at GSI
Stefan Ritt Paul Scherrer Institute, Switzerland
Front-end Digitization for fast Imagers.
Phase Frequency Detector &
Presentation transcript:

Development and Applications of the Timepix3 chip Vladimir Gromov2 Christoph Brezina3, Martin van Beuzekom2, Michael Campbell 1, Klaus Desch3, Vladimir Gromov2, Xiaochao Fang3, Ruud Kluit 2, Andre Kruth3, Tuomas Poikela1,4, Xavi Llopart 1, Francesco Zappon2 ,Vladimir Zivkovic2 1 CERN, Geneve, Switzerland, 2 National Institute for Subatomic Physics (Nikhef), Amsterdam, the Netherlands 3 Institute of Physics, Bonn University, Germany 4 University of Turku, Finland Vertex2011, Rust, Austria. June 24, 2011

Medipix / Timepix family of pixel detectors Outline Medipix / Timepix family of pixel detectors Timepix3 : functionality and features Design and performance of some basic circuits Summary Vertex2011 V.Gromov 24/06/11 2

Medipix detectors Photon (X-ray) counting hybrid pixel detector Imaging / medical applications 1997: Medipix1 (CERN) - technology: 1μm CMOS array: 64 x 64 pixel: 170 um x 170 um 2001-2005: Medipix2 (CERN) - technology: 0.25μm CMOS, 6-metal array: 256 x 256 pixel: 55 um x 55 um energy resolved photon counting 2009: Medipix3 (CERN) - technology: 0.13μm CMOS, 8-metal charge summing mode improved energy resolution Vertex2011 V.Gromov 24/06/11 3

Timepix pixel readout chip TPC / micro-pattern gas detectors applications measures hit arrival time OR energy deposit on each pixel 2007: Timepix (CERN) external clock : 100 MHz full frame readout : serial port (10ms/frame) Limitations any event readout requires full frame no zero suppression dead time (no continuous readout) time resolution is only 10ns (bin size) slow front-end (time-walk ~120ns) Vertex2011 V.Gromov 24/06/11 4

Timepix3 project: design goals and current status Timepix3 is an approved project of the Medipix3 collaboration with an assigned budget (2-engineering runs in 2012, 130nm CMOS) wide range of non-HEP applications: X-ray imaging Dosimetry Compton camera, gamma polarization camera, fast neutron camera, nuclear fission, astrophysics … time-resolved imaging hit (photon) → ToA & ToT continuous & sparse readout minimum dead time suitable for HEP applications Vertex2011 V.Gromov 24/06/11 5

Required readout chips for the HEP applications Upgrade of the LHCb VELO detector: VELOPIX minimum pixel size extremely high illumination: up to 290 Mhits/cm2/s continuous data readout sparse data (zero suppression) charge measurement high time resolution: ~ 1ns wide dynamic range : ~ 100μs high sensitivity : threshold ≈ 350e- Micro-pattern gas avalanche detectors: GOSSIP, TPC etc. Vertex2011 V.Gromov 24/06/11 6

Timepix3: main features Value technology 130nm CMOS pixel array 256 x 256 pixel size 55μm x 55μm input charge both : h+ and e- sensor leakage current compensation Yes data acquisition ToA &ToT / only ToA / Event count & Integral ToT minimum threshold > 500 e- (1.8keV) peaking time ~ 15ns time walk (charge collection time) < 25ns Time resolution / range 1.6nsec / 410μsec ToT accuracy / range 25ns / 25.6 μsec (~150 Ke-) readout Continuous sparse / Non-continuous sparse output bandwidth 2.56Gbps count rate up to 20 ●106 cm-2 sec-1 data transmission Conventional (separate Clock ) / Clock&Data Encoded8b/10b Power consumption ~ 20μW/pixel (1.3W/chip) Vertex2011 V.Gromov 24/06/11 7

Timepix3: top level block diagram 128 double-columns @ 256● 55μm = 1.4cm pixel: 55μm x 55μm Super Pixel: 8pixels @ 4 x 2 64 Super Pixels in a DC 128 Double Columns (DC) Super Pixel FIFO : 2-events DC bus: 40MHz End-of-DC FIFO: 4-events Periphery bus: 40MHz @ 44b Output Serializer / FIFO double column data bus (40MHz) Analog Front-end Digital Region Readout Control (TOKEN based) Analog regions (30%) Time Stamp 14b ToT Counter 10b DAC MUX Fast Counter 4b Double column bus Digital region (70%) Ring oscillator (640MHz) FIFO MUX Fast Counter 4b MUX ToT Counter 10b Time Stamp 14b DAC 8-Pixel Region FiFO Readout control (Token based) periphery bus End of Column Logic periphery data bus 40MHz Serializer / FIFO Tx Data output block Vcntr (oscillator) DAC Bandgap EFUSE chip ID Bias gen. Slow control Tx RX RX RX PLL Clock Data_out Data_in Reset_GLB Clock 40 MHz 8 x LVDS Vertex2011 V.Gromov 24/06/11 8

Event Count & Integral ToT Double hit resolution (per pixel) Timepix3: modes of operation Data acquisition mode ToA & ToT Only ToA Event Count & Integral ToT Data format Fast Time (640MHz @ 4b) & Slow Time Stamp (40MHz @ 14b) & ToT (40MHz @10b) & Pixel coordinate (16b) Event Count(10b) & Integral ToT ( 14b) & Double hit resolution (per pixel) ToT + 700ns > 450ns - Readout continuous sparse data readout with zero-suppression non-continuous sparse data readout with Max counting rate < 100kHz/pixel Max counting rate < 1kHz/pixel Full chip readout time 1.6msec Vertex2011 V.Gromov 24/06/11 9

High resolution TDC Shared Ring Oscillator architecture (per Super Pixel) Gated 640MHz CLK Hit_1 Pixel logic _1 Counter_1 SyncCLK Pixel logic _2 Counter_2 Pixel logic _8 Counter_8 Ring Oscillator Start / Stop 640MHz CLK OR Vcntr Time diagrams Preamp_out Hit SyncCLK (40MHz) Ring Oscillator Counter low switching activity ~10-5 negligible power consumption compact design (~10% of the pixel area) Vertex2011 V.Gromov 24/06/11 10

RC Ring Oscillator voltage-controlled Vcntr NCAP = Varactor VDD start / stop OUT NAND Control characteristic Effect of the power supply voltage voltage-controlled low sensitivity to the power supply channel-to-channel mismatch ~1% Vertex2011 V.Gromov 24/06/11 11

Phase Locked Loop (PLL) TDC’s array with a PLL control DC_1 DC_2 DC_3 DC_4 Ring Oscillator Features immunity to variations good uniformity Gossipo-4 (Aug 8, 2011) Vcntr ∆V ≈ 0 Ring Oscillator Vcntr Icntr ≈ 0 Vcntr Ring Oscillator SyncCLK (40MHz) Phase Frequency Detector Charge Pump Loop Filter OUT Vcntr FbCLK (40MHz) :16 640MHz CLK Phase Locked Loop (PLL) Vertex2011 V.Gromov 24/06/11 12

Charge sensitive preamplifier based on Krummenacher scheme both input signal polarities (h+ and e-) Vdd=1.5V Ikrum Preamp_out signals -10 000e- electrons (e-) (Gas Detectors) source current -5 000e- Single-stage OPAMP -1 000e- Preamp_in Preamp_out 1 000e- 0.8V 0.36V 5 000e- Cd holes (h+) lpnfet Cfb=3fF current sink 0.37V 10 000e- Ck high gain (50mV / 1ke-) minimum time-walk (peaking time ~ 10ns) low noise (σ ≈ 75e- @ Cd=25fF) power 4.5μW (3μA @ 1.5V) Vertex2011 V.Gromov 24/06/11 13

Pulse height discriminator threshold tuning per pixel (4bit) fast response Time diagrams preamp output Preamp_out In1 Discr_out THR Vthr / polarity In2 discriminator output ∆t1 Threshold tuning (4bit) ∆t2 power ≈ 6μW (4μA @ 1.5V) internal delay ≈ 3ns threshold mismatch ≈ 150e- threshold mismatch (with tuning) ≈ 10e- 9 6 3 Propagation delay ∆t, ns discriminator output preamp output 0 -10k -20k -30k Qin, e- Vertex2011 V.Gromov 24/06/11 14

Readout of the chip Vertex2011 V.Gromov 24/06/11 15 Conventional readout link Embedded clock readout link Timepix 3 Readout boards Timepix 3 Readout boards Clock Receive Engine Clock Clock 8b /10b Encoding Clock Recovery block Data [0:7] Encoded signal {Clock + Data} Data Data Clock Data Encoded signal 8b/10b encoding: 8b-word by 10b symbol continuous activity for clock recovery NO clock/data skew and synchronization issues disparity correction (between 1’s and 0’s) DC balance control data alignment data bus and clock bus are separate synchronization loss at high rate Vertex2011 V.Gromov 24/06/11 15

Timepix3: interface part Periphery Data Bus: 44bit @ 40MHz DataIn Round-robin Distributor SyncCLK (40MHz) DataOut [0:7] Link is almost full 44bit Slow control Control Logic FIFO Mode of operation definition 160MHz MUX 320MHz Configuration data (threshold DAC’s, masks etc) 640MHz 8bit :10 Phase Locked Loop 8b/10b Encoder 10bit ½ Clock delay Data_serial_ link Clock_serial_link Serializer ReadoutCLK Ext. Readout clock Shutter Reset Busy SyncCLK (40MHz) Clock 1bit Data 1bit Two modes of operation : - encoded Clock – Data output (at 640 MHz) - separate Clock and Data outputs (at 320MHz, 160MHz …. ) selectable readout speed Vertex2011 V.Gromov 24/06/11 16

Summary Timepix3 pixel readout chip is being developed in the frame of the Medipix3 collaboration for a wide range of applications the chip is defined as a 256 by 256 pixel array (~2cm2) where each pixel measures 55μm by 55μm for each hit both time-of-arrival will be measured with 1.6ns accuracy as well as charge deposit (time-over-threshold method) the chosen architecture allows for continuous readout of the sparsely distributed data with the hit rate up to 20 ●106 cm-2 sec-1 event count mode will also be available for imaging applications and for calibration the chip is planned for submission in the beginning of 2012 Vertex2011 V.Gromov 24/06/11 17

Spare slides

Medipix-based detectors: the sensor Vertex2011 V.Gromov 24/06/11 19

Medipix family detectors Photon (X-ray) counting hybrid pixel detector Imaging / medical applications 1997: Medipix1 (CERN) - emerged from LHC1/Omega3 (technology: 1μm CMOS) array: 64 x 64 / pixel: 170 um x 170 um / active area: 1.2cm2 min detectable signal : 1 400 e- (5.1 keV in Si) counter-per-pixel: 15-bit shift register-based readout: 16b output bus @ 10 MHz (384μs) 2001-2005: Medipix2 (CERN) - technology: 0.25μm CMOS, 6-metal array: 256 x 256 / pixel: 55 um x 55 um / active area: 2cm2 energy window resolved photon counting: 2 discriminators counter-per-pixel: 13-bit (14-bit) (max counting rate : 100kHz) frame-based readout via: an LVDS TX: 1b @160MHz (< 9.2ms) 32-bit parallel port (< 300us@100MHz) 3-side buttable: chip interface at one side only 2009: Medipix3 (CERN) - technology: 0.13μm CMOS, 8-metal highly configurable improved energy resolution: charge summing mode per pixel: 2 discriminators and 2 counters continuous count-read mode : second counter is a storage buffer designed for TSV (through-silicon via) Vertex2011 V.Gromov 24/06/11 20

Preamp: main specifications Simulation Results (Xavi) Simulation Results (Vladimir Gromov) Pixel size 55 µm x 55 µm ok Analog pixel area 55 µm x [10…20] µm Pixel matrix 256 x 256 Input charge Bipolar (h+ and e-) Leakage current compensation YES limited by the value of the Ikrum for electron signals Detector capacitance (Planar detector) < 50 fF 10fF (Gas Detectors) Peaking time <25ns if Cd<70fF 8ns (Cd=10fF), 11ns (Cd=25fF), 17ns (Cd=50fF) Preamp output linear dynamic range (Cf=3fF) < 15 Ke- Gain=48mV/1Ke- → Output range = 1Ke-●800mV/48mV ≈ 12 Ke- Timewalk <25ns [@ Qin>Threshold] < peaking time Return to zero (Tunable) YES (ΔIkrum) hole signals: not monotonous TOT linearity and range Monotonic up to ~150 Ke- @Ikrum 10nA limited linearity in the range: ± 800mV ● (Cd+Cf) ≈ ± 150 Ke- if INL=15%; Cd=25fF, Cf=3fF Return to zero full chip spread (TOT spread) < 5% Qin=30ke- @ holes= ± 20% ( σ= 5% ); electrons= ± 12% ( σ= 3% ) ENC (σENC) 0.57*Cd[fF]+61 [e-] → ~75 e- @ Cd=25fF σ = 64 e- (Cd=0fF), σ = 68 e- (Cd=10fF), σ = 76 e- (Cd=25fF) # Thresholds 1 Discriminator response time <5ns [if Qin>Threshold + 5 Ke-] MC simulated Threshold spread ~200 e- Preamp out: 30mV (p-p) → 625 e- (p-p) → σ = 100 e- Discriminator input referred : 21mV(p-p) → σ = 73 e- Overall: 37mV (p-p) → σ = 125 e- Threshold spread after tuning (4 bits) ~20 e- 8 e- Full chip minimum detectable charge 6*sqrt(ENC2+Threshold_mismatch2) → ~475 e- @ Cd=25fF Pixel analog power consumption 8.4 µW static (Preamp 3.6 µW and 4.8 µW Discriminator) 2.4 µW dynamic (only @ HIT) Preamp: 3μA ● 1.5V = 4.5 µW (static) Discriminator: electrons 6μA ● 1.5V = 9 µW (static) holes: 4μA ● 1.5V = 6 µW (static) Stability (Phase Margin) - Phase margin = 44° Worst case: Ikrum =10nA, Cd=25fF, Vdd=1.5V, Ck=3.6pF Vertex2011 V.Gromov 24/06/11 21

Charge deposit measurements: time-over-threshold method wide dynamic range : ± 100 ke- Preamp_out signals Single-stage OPAMP Ikrum Preamp_in Preamp_out Qin I2 Cfb I1 -50 ke- Cd -25 ke- -10 ke- feedback - 5 ke- Qin < 15ke- : input charge stored on Cfb 15ke- <Qin < 100ke- : input charge stored on Cd 100ke- < Qin : input charge is drained be the parasitic diodes discharge current is signal-dependent → (INL ≈ 10% ) channel-to-channel ToT mismatch ≈ 25% Preamp_in signals -25 ke- -50 ke- Vertex2011 V.Gromov 24/06/11 22

σ(jitter) / ToT = σ(Uoutnoise) ● Cfb / Qin Accuracy of the ToT measurements electronic noise causes time jitter: σ jitter = σ(Uout noise) / [dU/dt] Qin ToT ToT accuracy 6 ● σ(jitter) / ToT -2 ke- 0ns ∞ -4 ke- 86ns 14% -6 ke- 147ns 8.2% -8 ke- 207ns 5.8% -10 ke- 267ns 4.5% -20 ke- 546ns 2.2% -30 ke- 801ns 1.5% -50 ke- 1260ns 0.9% -100 ke- 2050ns 0.6% Preamp Output THR Comparator Output ToT= Qin / Idis σ(jitter) = σ(Uout noise) / [dU/dt] ↓ Idis/Cfb σ(jitter) / ToT = σ(Uoutnoise) ● Cfb / Qin time jitter lowering of electronic noise decreasing of the feedback capacitor Vertex2011 V.Gromov 20/06/11 23

Spartan-6 evaluation board (Peter Jansweijer) high-speed links Spantan-6 FPGA 3.2Gbps optical link supports links running at 640MHz Vertex2011 V.Gromov 24/06/11 24

Micro-pattern gas detectors: layout and features Gas-avalanche detector combining a gas layer as signal generator with a CMOS readout pixel array Cathode (drift) plane Cluster1 Cluster2 1mm …1m → Drift gap Cluster3 Gas Amplification Structure 400V 50um → Avalanche gap Readout chip Cpar Front-end circuit - particle track image (projection) 3D track reconstruction no sensor leakage current compensation low parasitic capacitance (less than 10fF) - micro-discharges in avalanche gap TWEPP-09 V.Gromov 24/06/11 25