Requirements for a loophole-free Bell test using imperfect setting generators Johannes Kofler Max Planck Institute of Quantum Optics (MPQ) Garching/Munich,

Slides:



Advertisements
Similar presentations
Bell violation with entangled photons and without the fair-sampling assumption Foundations of Physics 2013 LMU Munich, Germany 30 July 2013 Johannes Kofler.
Advertisements

Closing loopholes in Bell tests of local realism Workshop Quantum Physics and the Nature of Reality International Academy Traunkirchen, Austria 22 November.
Vlatko Vedral Oxford and Singapore Extreme nonlocality with a single photon.
Experiments thought to prove non – locality may be artifacts Karl Otto Greulich. Fritz Lipmann Institute Beutenbergstr. 11 D Jena Entanglement, the.
1 quantum teleportation David Riethmiller 28 May 2007.
Quantum Control of Wave- Particle Duality Robert Mann D. Terno, R. Ionicioiu, T. Jennewein.
Blaylock - Clark University 2/17/10 Wringing John Bell vocabulary the EPR paradox Bell’s theorem Bell’s assumptions what does it mean? Guy Blaylock Clark.
The quantum world is stranger than we can imagine Bell's theorem (1964) Limits on hidden-variable accounts "Bell's theorem is the most profound discovery.
Texas A&MTexas A&M Physics&AstronomyPhysics&Astronomy Seven Pines Symposium XVII 2013 Bell Inequality Experiments Edward S. Fry Physics & Astronomy Department.
Bell inequality & entanglement
Macroscopic Realism Emerging from Quantum Physics Johannes Kofler and Časlav Brukner 15th UK and European Meeting on the Foundations of Physics University.
Bell’s inequalities and their uses Mark Williamson The Quantum Theory of Information and Computation
Quantum Computing MAS 725 Hartmut Klauck NTU
1 Multiphoton Entanglement Eli Megidish Quantum Optics Seminar,2010.
Observing the quantum nonlocality in the state of a massive particle Koji Maruyama RIKEN (Institute of Physical and Chemical Research) with Sahel Ashhab.
Entanglement and Bell’s Inequalities Aaron Michalko Kyle Coapman Alberto Sepulveda James MacNeil Madhu Ashok Brian Sheffler.
Universal Optical Operations in Quantum Information Processing Wei-Min Zhang ( Physics Dept, NCKU )
Quantum fermions from classical statistics. quantum mechanics can be described by classical statistics !
Future Challenges in Long-Distance Quantum Communication Jian-Wei Pan Hefei National Laboratory for Physical Sciences at Microscale, USTC and Physikalisches.
Chapter 22 The EPR paper and Bell's theorem by Steve Kurtz.
Deterministic teleportation of electrons in a quantum dot nanostructure Deics III, 28 February 2006 Richard de Visser David DiVincenzo (IBM, Yorktown Heights)
EECS 598 Fall ’01 Quantum Cryptography Presentation By George Mathew.
Necessary and sufficient conditions for macroscopic realism from quantum mechanics Johannes Kofler Max Planck Institute of Quantum Optics (MPQ) Garching/Munich,
Study and characterisation of polarisation entanglement JABIR M V Photonic sciences laboratory, PRL.
Institute of Technical Physics Entanglement – Beamen – Quantum cryptography The weird quantum world Bernd Hüttner CPhys FInstP DLR Stuttgart.
History-Dependent Graphical Multiagent Models Quang Duong Michael P. Wellman Satinder Singh Computer Science and Engineering University of Michigan, USA.
Feynman Festival, Olomouc, June 2009 Antonio Acín N. Brunner, N. Gisin, Ll. Masanes, S. Massar, M. Navascués, S. Pironio, V. Scarani Quantum correlations.
Quantum, classical & coarse-grained measurements Johannes Kofler and Časlav Brukner Faculty of Physics University of Vienna, Austria Institute for Quantum.
Paraty, Quantum Information School, August 2007 Antonio Acín ICFO-Institut de Ciències Fotòniques (Barcelona) Quantum Cryptography (III)
Photonic Bell violation closing the fair-sampling loophole Workshop “Quantum Information & Foundations of Quantum Mechanics” University of British Columbia,
University of Gdańsk, Poland
QUANTUM TELEPORTATION
A deterministic source of entangled photons David Vitali, Giacomo Ciaramicoli, and Paolo Tombesi Dip. di Matematica e Fisica and Unità INFM, Università.
1 Introduction to Quantum Information Processing CS 667 / PH 767 / CO 681 / AM 871 Richard Cleve DC 2117 Lecture 19 (2009)
Steering witnesses and criteria for the (non-)existence of local hidden state (LHS) models Eric Cavalcanti, Steve Jones, Howard Wiseman Centre for Quantum.
QCCC07, Aschau, October 2007 Miguel Navascués Stefano Pironio Antonio Acín ICFO-Institut de Ciències Fotòniques (Barcelona) Cryptographic properties of.
A comparison between Bell's local realism and Leggett-Garg's macrorealism Group Workshop Friedrichshafen, Germany, Sept 13 th 2012 Johannes Kofler.
Necessary adaptation of the CH/Eberhard inequality bound for a loophole-free Bell test Quantum Theory: from Problems to Advances – QTPA Linnaeus University,
Device-independent security in quantum key distribution Lluis Masanes ICFO-The Institute of Photonic Sciences arXiv:
1 Experimenter‘s Freedom in Bell‘s Theorem and Quantum Cryptography Johannes Kofler, Tomasz Paterek, and Časlav Brukner Non-local Seminar Vienna–Bratislava.
Black-box Tomography Valerio Scarani Centre for Quantum Technologies & Dept of Physics National University of Singapore.
A condition for macroscopic realism beyond the Leggett-Garg inequalities APS March Meeting Boston, USA, March 1 st 2012 Johannes Kofler 1 and Časlav Brukner.
Quantum entanglement and macroscopic quantum superpositions Quantum Information Symposium Institute of Science and Technology (IST) Austria 7 March 2013.
Bell tests with Photons Henry Clausen. Outline:  Bell‘s theorem  Photon Bell Test by Aspect  Loopholes  Photon Bell Test by Weihs  Outlook Photon.
Violation of local realism with freedom of choice Faculty of Physics, University of Vienna, Austria Institute for Quantum Optics and Quantum Information.
Uni-Heidelberg Physikalisches Insitut Jian-Wei Pan Multi-Particle Entanglement & It’s Application in Quantum Networks Jian-Wei Pan Lecture Note.
1 Realization of qubit and electron entangler with NanoTechnology Emilie Dupont.
Indefinite causal order in quantum mechanics Faculty of Physics, University of Vienna & Institute for Quantum Optics and Quantum Information, Vienna Mateus.
Bell and Leggett-Garg tests of local and macroscopic realism Theory Colloquium Johannes Gutenberg University Mainz, Germany 13 June 2013 Johannes Kofler.
Bell’s Inequality.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
Macrorealism, the freedom-of-choice loophole, and an EPR-type BEC experiment Faculty of Physics, University of Vienna, Austria Institute for Quantum Optics.
Non-Locality Swapping and emergence of quantum correlations Nicolas Brunner Paul Skrzypczyk, Sandu Popescu University of Bristol.
Quantum Non-locality: From Bell to Information Causality Alex Thompson Physics 486 March 7, 2016.
Spooky action at distance also for neutral kaons? by Beatrix C. Hiesmayr University of Vienna Projects: FWF-P21947 FWF-P23627 FWF-P26783 Fundamental Problems.
Spontaneous Parametric Down Conversion and The Biphoton
Secret keys and random numbers from quantum non locality Serge Massar.
DPG 1 What is Realism in Physics? What is the Price for Maintaining It? A. J. Leggett Dept. of Physics University of Illinois at Urbana-Champaign 75 th.
No Fine Theorem for Macrorealism Johannes Kofler Max Planck Institute of Quantum Optics (MPQ) Garching/Munich, Germany Quantum and Beyond Linnaeus University,
Using Neutrino Oscillations to Test the Foundations of Quantum Mechanics David Kaiser.
Quantum nonlocality based on finite-speed causal influences
No Fine theorem for macroscopic realism
Loophole-free test of Bell’s theorem with entangled photons
M. Stobińska1, F. Töppel2, P. Sekatski3,
Quantum mechanics from classical statistics
Johannes Kofler Max Planck Institute of Quantum Optics (MPQ)
Realism Versus Quantum Mechanics: Implications of Some Recent Experiments A. J. Leggett Department of Physics University of Illinois at Urbana-Champaign.
Classical World because of Quantum Physics
Max Planck Institute of Quantum Optics (MPQ)
Quantum computation with classical bits
Presentation transcript:

Requirements for a loophole-free Bell test using imperfect setting generators Johannes Kofler Max Planck Institute of Quantum Optics (MPQ) Garching/Munich, Germany QuPoN University of Vienna, 21 May 2015

Introduction Local realism: “objects have pre-existing definite properties & no action at a distance”  Bell’s inequality Relevant for (security of) modern quantum information protocols  Quantum cryptography  Randomness amplification / expansion Bell experiments have “loopholes”  Locality  Freedom of choice  Fair sampling  Coincidence time  Memory (joint work with Marissa Giustina) Loophole-free experiment on the horizon John S. Bell (1928–1990)

Bell: 1 Deterministic models:“Determinism”: “Locality”: Bell: 2 Stochastic models: “Local causality”: “Freedom of choice”: 3 (“measurement independence”) Bell’s Assumptions Bell’s theorem Local causality  Freedom of choice  Bell inequality   1 J. S. Bell, Physics 1, 195 (1964) 3 J. F. Clauser & M. A. Horne, Phys. Rev. D 10, 526 (1974) 2 J. S. Bell, Epistemological Lett. 9 (1976) Remarks:original Bell paper: 1 X = “Perfect anti-correlation”: A(b,λ) = –B(b,λ) CHSH: 4 X = “Fair sampling” 4 J. F. Clauser, M. A. Horne, A. Shimony, R. A. Holt, PRL 23, 880 (1969)

Bell’s Assumptions “Realism” An important moment in the history of quantum foundations Nicolas and Anton agreeing on the definition of “realism” Oxford, Sept almost

Loopholes Relevance – quantum foundations – quantum cryptography, randomness amplification/expansion Loopholes: maintain local realism despite exp. Bell violation

Locality 1 A. Aspect, P. Grangier, G. Roger, PRL 49, 91 (1982) 2 G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, A. Zeilinger, PRL 81, 5039 (1998) 3 A. Kent, PRA, (2005) Loophole closed by space-time arrangement: 1,2 Space-like separation between the outcomes (outcome independence) Space-like separation between each outcome and the distant setting (setting independence) Remark: Collapse locality loophole 3 cannot be fully closed in principle

Freedom of choice Loophole addressed by space-time arrangement: 1,2 Space-like separation of setting choice events a,b and the pair emission event E 1 T. Scheidl, R. Ursin, J.K., T. Herbst, L. Ratschbacher, X. Ma, S. Ramelow, T. Jennewein, A. Zeilinger, PNAS 107, (2010) 2 C. Erven, E. Meyer-Scott, K. Fisher, J. Lavoie, B. L. Higgins, Z. Yan, C. J. Pugh, J.-P. Bourgoin, R. Prevedel, L. K. Shalm, L. Richards, N. Gigov, R. Laflamme, G. Weihs, T. Jennewein, K. J. Resch, Nature Photon. 8, 292 (2014) Remarks: Superdeterminism can never be ruled out Cosmic sources: 3 3 J. Gallicchio, A. S. Friedman, D. I. Kaiser, PRL 112, (2014)

Cosmic sources Tenerife, Sept Anton already searching for some (very bright) quasars?

Fair sampling 1 P. M. Pearle, PRD 2, 1418 (1970) Fair sampling:Local detection efficiency depends only on hidden variable:  A =  A ( ),  B =  B ( )  observed outcomes faithfully reproduce the statistics of all emitted particles Two options to close the loophole: 1.Violate inequality that assumes fair sampling (e.g. CHSH) and show large total detection efficiency (> 82.8% for CHSH 2 ) Atoms 3, superconducting qubits 4 2.Violate inequality that does not assume fair sampling (e.g. CH, Eberhard, eff. 2/3) Photons 5,6 2 A. Garg & N. D. Mermin, PRD 35, 3831 (1987) Unfair sampling:Local detection efficiency is setting-dependent  A =  A (a, ),  B =  B (b, )  fair-sampling (detection) loophole 1 3 M. A. Rowe et al., Nature 409, 791 (2001) 4 M. Ansmann et al., Nature 461, 504 (2009) 5 M. Giustina et al., Nature 497, 227 (2013) 6 B. G. Christensen et al., PRL 111, (2013)

Coincidence-time 2 J.-Å. Larsson, M. Giustina, J.K., B. Wittmann, R. Ursin, S. Ramelow, PRA 90, (2014) Moving windows coinc.-time loophole open Predefined fixed local time slots 2 coinc.-time loophole closed 3,4,5 Unfair coincidences: Detection time is setting-dependent T A = T A (a, ), T B = T B (b, )  coincidence-time loophole 1 1 J.-Å. Larsson and R. Gill, EPL 67, 707 (2004) 3 M. B. Agüero et al., PRA 86, (2012) 4 B. G. Christensen et al., PRL 111, (2013) 5 M. Giustina et al., Nature 497, 227 (2013)

Memory Memory:k-th outcome A (k) can depend on history: A (k) = A (k) (A (1),A (2),…,A (k–1) ;a (1),a (2),…,a (k–1) ;B (1),B (2),…,B (k–1) ;b (1),b (2),…,b (k–1) ) similar for B (k)  memory loophole 1,2,3 1 L. Accardi & M. Regoli, quant-ph/ ; quantph/ ; quant-ph/ R. Gill, quant-ph/ , quant-ph/ A. Kent, PRA 72, (2005) Two solutions: 1.Space-like separated setups, used only once for each pair (unfeasible / impossible) 2.Drop assumption that trials are i.i.d. (independent and identically distributed) cannot use “standard” standard-deviation approach  “hypothesis testing”, e.g. supermartingales & Hoeffding‘s inequality.....

Towards a loophole-free Bell test (At least) 3 groups: Delft 1 NV centers Munich 2 atoms Viennaphotons 1 W. Pfaff, B. Hensen, H. Bernien, S. B. van Dam, M. S. Blok, T. H. Taminiau, M. J. Tiggelman, R. N. Schouten, M. Markham, D. J. Twitchen, R. Hanson, Science 345, 532 (2014) 2 J. Hofmann, M. Krug, N. Ortegel, L. Gérard, M. Weber, W. Rosenfeld, H. Weinfurter, Science 337, 72 (2012) Hofburg Vienna, June 2014 heralded entanglement

Imperfect setting generators Setting generators always have non-zero correlation into the past  predictability Needs to be adapted: Normalized Eberhard (CH) inequality Det. efficiency:  Pairs per pulse:

Experimental runtime Hoeffding inequality: Eberhard value after trials: –J is a supermartingale: Case: Local realism (LR), Case: Local realism + pred. ( LR) –J is no longer a supermartingale: But –K is a supermartingale: Hoeffding inequality: Runtime of the experiment: for a statistically significant test closing the memory loophole

Rescue: Doob’s optional stopping theorem Diluted process: “stopping times” must be chosen without looking into the future Simple in LR: 1 stop only at non-empty trials: More tricky in LR: empty trials ( ) contribute to –K: Solution: 2 1 R. Gill, quant-ph/ J.K. & M. Giustina, arXiv: Choose stopping times Stop at:1. non-empty trials: 2. after a street of length of empty trials Range of increments from to in diluted sequence: 

Conclusion Loopholes relevant from foundational & technological perspective  Locality  Freedom of choice  Fair sampling  Coincidence time  Memory All loopholes closed in individual experiments Loophole-free Bell test in reach  within reasonable assumptions (no superdeterminism, validity of rules of logic, etc.) For photons essential (with today’s technology):  avoid CHSH  Doob’s stopping theorem

Looking three steps ahead…