PSC 151 Laboratory Activity 1 Measurement. The Importance of Measurement and Mathematics in the Physical Sciences Also since numbers are much less ambiguous.

Slides:



Advertisements
Similar presentations
Homework Answers m/s m g/L cm3
Advertisements

Measuring, Precision vs. Accuracy, and Intro to Significant Figures
The volume we read from the beaker has a reading error of +/- 1 mL.
Chemistry UNIT 1. Susie Smith August, 2010 Chemistry is the study of matter.
Chapter 1: Measurements
Measurements and Calculations
Using Scientific Measurements.
Ch. 3.1 – Measurements and Their Uncertainty
Scientific Measurement
Chapter 3 Scientific Measurement
Scientific Measurement
Making Measurements and Using Numbers The guide to lab calculations.
1.07 Accuracy and Precision
Chapter 2 Data Analysis.
Measurements and Calculations
Chapter 2 Data Handling.
Chapter 2 The Metric System
Chapter 3 Scientific Measurement 3.1 Using and Expressing Measurements
Lesson Starter Look at the specifications for electronic balances. How do the instruments vary in precision? Discuss using a beaker to measure volume versus.
Chapter 2 Measurement & Problem Solving. Uncertainty There is a certain amount of doubt in every measurement – It is important to know the uncertainty.
Chapter 3 Scientific Measurement Pioneer High School Mr. David Norton.
Accuracy, Precision, and Error
Chapter 2 Measurements and Calculations. Chapter 2 Table of Contents Return to TOC Copyright © Cengage Learning. All rights reserved 2.1 Scientific Notation.
Measurement and Science He has it down to an exact science…… What the heck does that mean? Science is not about being for sure. Science is about exploring.
Measurements and Calculations 1. To show how very large or very small numbers can be expressed in scientific notation 2. To learn the English, metric,
Measurements and Calculations
Applying Mathematical Concepts to Chemistry DATA ANALYSIS.
The Nature of Science and Technology
Objectives Distinguish between accuracy and precision. Determine the number of significant figures in measurements. Perform mathematical operations involving.
CHAPTER 1 : PHYSICS AND MEASUREMENT
Measuring and Significant Digits. Parallax Error Parallax is the apparent shift in position of an object caused by the observer’s movement relative to.
3.1 Using and Expressing Measurements > 1 Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved. Chapter 3 Scientific Measurement.
Significant Figures. Accuracy vs. Precision Percentage Error.
P 251 Laboratory Activity 1 Measurement.
Scientific Measurement Chpt 3. Units of Measure –general qualitative – describes matter – ex. Rough, shiny, heavy, blue quantitative – measures matter.
Foundations of Chemistry. Prefixes l Tera-T1,000,000,000, l giga- G 1,000,000, l mega - M 1,000, l kilo - k 1, l deci-d0.1.
Significant Figures When using calculators we must determine the correct answer. Calculators are ignorant boxes of switches and don’t know the correct.
The Rules of the Game. Over hundreds of years ago, physicists and other scientists developed a traditional way of expressing their observations.  International.
Chapter 3 Scientific Measurement
CHAPTER 3 NOTES Scientific Measurement. Measurement Qualitative measurements give results in descriptive, nonnumeric form. (Red balloon, tiny animal)
Chapter 2 Data Analysis. I. SI Units Scientists adopted a system of standard units so all scientists could report data that could be reproduced and understood.
Physical Science Methods and Math Describing Matter The Scientific Method Measurements and Calculations 1.
Unit 2 Chapters 3 & 4. Review Qualitative measurement Qualitative measurement Uses descriptive wordsUses descriptive words Quantitative measurement Quantitative.
Chapter 3. Measurement Measurement-A quantity that has both a number and a unit. EX: 12.0 feet In Chemistry the use of very large or very small numbers.
Data Analysis Applying Mathematical Concepts to Chemistry.
Matter And Measurement 1 Matter and Measurement. Matter And Measurement 2 Length The measure of how much space an object occupies; The basic unit of length,
Preview Lesson Starter Objectives Accuracy and Precision Significant Figures Scientific Notation Using Sample Problems Direct Proportions Inverse Proportions.
Objectives Describe the purpose of the scientific method. Distinguish between qualitative and quantitative observations. Describe the differences between.
Scientific Notation & Significant Figures in Measurement.
Data Analysis Applying Mathematical Concepts to Chemistry.
Applying Mathematical Concepts to Chemistry DATA ANALYSIS.
CHEMISTRY CHAPTER 2, SECTION 3. USING SCIENTIFIC MEASUREMENTS Accuracy and Precision Accuracy refers to the closeness of measurements to the correct or.
Chapter 2 © Houghton Mifflin Harcourt Publishing Company Accuracy and Precision Accuracy refers to the closeness of measurements to the correct or accepted.
Section 5.1 Scientific Notation and Units Steven S. Zumdahl Susan A. Zumdahl Donald J. DeCoste Gretchen M. Adams University of Illinois at Urbana-Champaign.
Measuring and Calculating Chapter 2. n Scientific method- a logical approach to solving problems n -Observation often involves making measurements and.
Measurement Chapter 2. Units in Lab In lab we cannot always measure in SI units. In lab we cannot always measure in SI units.Mass Grams (g) Volume Milliliters.
MEASURING IN SCIENCE Metric System, units, significant figures, rounding, and scientific notation.
The scientific method is a logical approach to solving problems by observing and collecting data, formulating hypotheses, testing hypotheses, and formulating.
Scientific Measurement Chapter 3. Not just numbers Scientists express values that are obtained in the lab. In the lab we use balances, thermometers, and.
Chapter One Measurement and the Metric System. The Importance of Measurement and Mathematics in the Physical Sciences Also since numbers are much less.
Chapter 2: Measurements and Calculations
Measuring and Calculating
Measurements Number followed by a Unit
Measurements Number followed by a Unit from a measuring device
Chapter 2 Table of Contents Section 1 Scientific Method
1.2 Measurement and Scientific Notation
Using Scientific Measurements
Introduction to Chemistry and Measurement
Measurements and Calculations
Presentation transcript:

PSC 151 Laboratory Activity 1 Measurement

The Importance of Measurement and Mathematics in the Physical Sciences Also since numbers are much less ambiguous than words, our hypotheses can be stated in a way so that they may be tested by many persons which increases our confidence in the results. Measurement allows us to express our observations in numerical form. This allows others to make the same observation and compare the results. This leads to increased confidence that the observation is valid. Well-confirmed observations are called facts. The importance of observation in science would be difficult to exaggerate. Every statement or idea in science must be checked and rechecked by observations of nature, and if the idea conflicts with the observation, the idea must yield and be modified or cast aside. No appeal to "common sense", authority, or anything else can save an idea that conflicts with observation.

Having our observations, hypotheses, and conclusions expressed numerically allows them to be manipulated using the rules of mathematics. 1. We can replace long verbal statements with more concise mathematical expressions. For example: Newton’s Second Law of Motion can be expressed in words as follows: “The magnitude of the acceleration of an object is directly proportional to the net force applied to the object, and inversely proportional to the object's mass. The direction of the acceleration is the same as the direction of the net force.” The statement above can be expressed mathematically as:

2. Once an idea is expressed in mathematical form, we can use the rules (axioms, theorems, etc.) of mathematics to change it into other statements. If the original statement is correct, and you follow the rules faithfully, your final statement will also be correct. For example: the acceleration of an object can be expressed mathematically as: We can multiply both sides of the equation by “t” to get:

What does it mean to measure something? Suppose you wanted to measure the length of a table. What would be your first step? Choose a standard unit of length that is appropriate for the measurement. Meter stick Yard stick Ruler, etc. What would be your next step? Compare the meter stick with the table, i.e. place one end of the meter stick at one end of the table, mark the location of the other end, move the meter stick to begin at the mark, continue to the other end of the table, counting as you go? Let’s choose the meter stick. Let’s say that we placed the meter stick 5 times. The final step is to record the measurement. The length of the table is: 5 meters or 5m

All measurements have two parts: A numerical part that gives the result of the comparison between the chosen unit and the thing being measured. A unit part which tells what standard unit was used to make the measurement. Both parts must be recorded if the measurement is to be useful. In this activity we will examine both the units with which measurements are made and rules related to the numerical part of a measurement. We will begin with the fundamental units from which all other units are derived.

Five Properties of Nature Five Fundamental Properties of Nature meter (m) kilogram (kg) second (s) Coulomb (C) Ampere (A) degree Celsius (°C) or Kelvin (K) Property MKS (metric) length (distance) mass time electric charge electric current temperature

Metric Prefixes Used to adjust the size of a unit to best fit the quantity being measured. PrefixSymbolMultiplies byPower of 10 notation MegaM1,000,000 kilok1,000 centi c0.01 millim0.001 micro Prefixes that enlarge a unit Prefixes that reduce a unit

Derived Properties ( Units depend on operational definition) Area Volume Density Speed Acceleration Rectangle Square Circle Rectangular Solid Right Circular Cylinder Sphere

Force Work

Practice

Accuracy, Precision and Uncertainty in Measurements Working with the Numerical Part of a Measurement

Accuracy, Precision and Uncertainty in Measurement There is no such thing as a perfect measurement. Each measurement contains a degree of uncertainty due to the limits of instruments and the people using them. In laboratory exercises, students are expected to follow the same procedure that scientists follow when they make measurements. Each measurement should be reported with some digits that are certain plus one digit with a value that has been estimated. For example, if a student is reading the level of water in a graduated cylinder that has lines to mark each milliliter of water, then he or she should report the volume of the water to the tenth place (i.e ml.) This would show that the 18 ml are certain and the student estimated the final digit because the water level was about half way between the 18 and 19 mark. Two concepts that have to do with measurements are accuracy and precision.

The accuracy of the measurement refers to how close the measured value is to the true or accepted value. For example, if you used a balance to find the mass of a known standard g mass, and you got a reading of g, your measurement would not be very accurate. One important distinction between accuracy and precision is that accuracy can be determined by only one measurement, while precision can only be determined with multiple measurements. Precision refers to how close together a group of measurements actually are to each other. Precision has nothing to do with the true or accepted value of a measurement, so it is quite possible to be very precise and totally inaccurate. In many cases, when precision is high and accuracy is low, the fault can lie with the instrument. If a balance or a thermometer is not working correctly, they might consistently give inaccurate answers, resulting in high precision and low accuracy.

A dartboard analogy can demonstrate the difference between accuracy and precision. Imagine a person throwing darts, trying to hit the bullseye. The closer the dart hits to the bullseye, the more accurate his or her tosses are. If the person misses the dartboard with every throw, but all of their shots land close together, they can still be very precise. Students must strive for both accuracy and precision in all of their laboratory activities. Make sure that you understand the workings of each instrument, take each measurement carefully, and recheck to make sure that you have precision. Without accurate and precise measurement your calculations, even if done correctly, are quite useless. Low Accuracy Low Precision Low Accuracy High Precision High Accuracy Low Precision High Accuracy High Precision

Significant Figures Values read from the measuring instrument are expressed with numbers known as significant figures. For each measurement made it is important to consider significant figures and to keep in mind the uncertainties involved in measurement. When scientists report the results of their measurements it is important that they also communicate how 'close' those measurements are likely to be. This helps others to duplicate the experiment, but also shows how much 'room for error' there was. Significant figures are digits read from the measuring instrument plus one doubtful digit estimated by the observer. Example: a measurement of meters was made with a meter stick having millimeter marks. The figures 1, 2, 3, and 7 are certain while the 4 is estimated.

When you put a sample of a liquid into a graduated cylinder you will notice a curve at the surface of the liquid. This curve, which is called a meniscus, may be concave (curved downward) or convex (curved upward). Hold the graduated cylinder so that the meniscus is at eye level. Read the volume of the liquid at the bottom of a concave meniscus or at the top of a convex meniscus. Measuring Liquids

Rules For Significant Digits Digits from 1-9 are always significant. Zeros between two other significant digits are always significant. One or more additional zeros to the right of both the decimal place and another significant digit are significant. Zeros used solely for spacing the decimal point (placeholders) are not significant. Rules For Rounding Terminal zeros in a whole number may or may not be significant. Decide how many significant figures will be kept; look at the first digit to be rejected. If it is less than five (5) drop all rejected digits If it is greater than five (5) drop all rejected digits and increase the last retained significant digit by one (1). If it is equal to five (5) drop all rejected digits and increase the last retained significant digit by one (1) only to make it even.

Examples How many significant digits are in each of the following measurements? 1.75m g s 2000kg cm cm6 Round each of the following measurements to the indicated number of significant digits: cm (3) 3.09cm 20304kg (2) 20000kg s (2) s m (3) 10.0m The first zero (0) after the 2 is significant, the other zeros are not significant but only used to place the decimal point.

Measuring Uncertainty in Measurements When an accepted or standard value of the physical quantity is known, the percent error is calculated to compare an experimental measurement with the standard. When no standard exists, or when it is desired to measure the precision of an experiment, percent difference is calculated. Percent difference measures how much two or more measurements of the same quantity differ from each other. Percent error is a measure of accuracy.

Examples: An experiment designed to measure the density of copper obtained a value of 8.37g/cm 3. If the value listed in a reference table was 8.92g/cm 3, what was the percent error in the experimental value? Note: % error is usually rounded to one or two significant digits.

Five student in a lab group each measured the length of a wooden block. The results are listed below. Student # cm Student # cm Student # cm Student # cm Student # cm What is the % difference of their measurements? The group should use the average value of 25.30cm in future calculations.

Performing Arithmetic Operations with Measurements When multiplying or dividing, your answer may only show as many significant digits as the multiplied or divided measurement showing the least number of significant digits. Example: cm x 3.10 cm x cm = cm cm has 4 significant digits. 3.10cm has 3 significant digits cm has 4 significant digits. The product answer can only show 3 significant digits because that is the least number of significant digits in the original problem cm x 3.10 cm x cm = 5950 cm 3

When adding or subtracting your answer can only show as many decimal places as the measurement having the fewest number of decimal places. Example: 3.76 g g g = g 3.76g and 14.83g each have two decimal places 2.1g has only one decimal place The sum can only have one (1) decimal place g g g = 20.7 g

Example: The length and width of a rectangle are measured to be 12.7cm and 8.48cm respectively. What is the perimeter of the rectangle? Rounding to one decimal place:

What is the area of the rectangle? Rounding to three (3) significant digits: