Neutrino Physics with Penning Traps at MPI-K Sergey Eliseev Group of Prof. K. Blaum “Trapped and Cooled Ions“ MPI-K, Heidelberg MPI-K, Heidelberg SFB-Meeting,

Slides:



Advertisements
Similar presentations
LRP2010 WG5 Fundamental Interactions Nathal Severijns ( K.U.Leuven) for WG5 Scoping workshop Frankfurt, October th 2009.
Advertisements

Control Systems around Penning trap mass spectrometry Mikhail Goncharov CS-Workshop 2013 GSI, Darmstadt STORED AND COOLED IONS DIVISION.
Atomic masses – Competition worldwide K. Blaum, Phys. Rep. 425, 1-78 (2006) Penning-trap mass spectrometry groups for stable masses: D. Pritchard, MIT.
Penning-Trap Mass Spectrometry for Neutrino Physics
outline introduction experimental setup & status
Towards neutrino mass determination by electron capture Yuri Novikov PNPI (St.Petersburg) PNPI (St.Petersburg) and GSI (Darmstadt) Symposium in Milos:
SUMMARY – SESSION NU-3 ABSOLUTE NEUTRINO MASS SNOWMASS 2013, MINNEAPOLIS AUG 2, 2013 Hamish Robertson, University of Washington Convenors: Ben Monreal,
Precision mass measurements for fundamental studies Tommi Eronen Max-Planck-Institut für Kernphysik Heidelberg, Germany.
The ion trap facility SHIPTRAP at GSI Status and Perspectives Michael Block for the SHIPTRAP collaboration.
The CP-violation experiments NA48 at CERN Manfred Jeitler Institute of High Energy Physics of the Austrian Academy of Sciences RECFA meeting Innsbruck,
Neutrino Mass and Mixing David Sinclair Carleton University PIC2004.
DBD matrix elements Welcome and aim of the workshop Experimental situation Outcome.
Prospects for 7 Be Solar Neutrino Detection with KamLAND Stanford University Department of Physics Kazumi Ishii.
Neutrino Physics - Lecture 6 Steve Elliott LANL Staff Member UNM Adjunct Professor ,
A Penning trap as a precision mass balance – Q-Value determinations with ISOLTRAP and SMILETRAP Outline Workshop on NDBD, Durham, Klaus Blaum:
No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay.
XXIV WWND South Padre, TX, April 08 W. Bauer Slide 1 Double  Decays, DUSEL, and the Standard Model Wolfgang Bauer Michigan State University.
NEUTRINO PROPERTIES J.Bouchez CEA-Saclay Eurisol town meeting Orsay, 13/5/2003.
Search for  + EC and ECEC processes in 112 Sn A.S. Barabash 1), Ph. Hubert 2), A. Nachab 2) and V. Umatov 1) 1) ITEP, Moscow, Russia 2) CNBG, Gradignan,
Electron Capture branching ratio measurements at TITAN-TRIUMF T. Brunner, D. Frekers, A. Lapierre, R. Krücken, I. Tanihata, and J. Dilling for the TITAN.
Hamish Robertson, CENPA, University of Washington Direct probes of neutrino mass Neutrino Oscillation Workshop NOW2014, Otranto Italy Sept. 8.
Calor 2002, march 2002Auguste Besson1 Argon purity measurement of the D0 calorimeter Auguste Besson (ISN - Grenoble) for the D0 collaboration 10.
1 TCP06 Parksville 8/5/06 Electron capture branching ratios for the nuclear matrix elements in double-beta decay using TITAN ◆ Nuclear matrix elements.
I. Giomataris NOSTOS Neutrino studies with a tritium source Neutrino Oscillations with triton neutrinos The concept of a spherical TPC Measurement of.
Preparation of an isomerically pure beam and future experiments Outline TAS Workshop, Caen, March 30-31, 2004 Klaus Blaum for the ISOLTRAP Collaboration.
Zoran Andjelkovic Johannes Gutenberg Universität Mainz GSI Darmstadt Laser Spectroscopy of Highly Charged Ions and Exotic Radioactive Nuclei (Helmholtz.
STUDY OF CHARMONIUM STATES IN ANTIPROTON-PROTON ANNIHILATIONS: RESULTS FROM FERMILAB E-835 Giulio Stancari Fermi National Accelerator Laboratory for the.
LAGUNA Large Apparatus for Grand Unification and Neutrino Astrophysics Launch meeting, Heidelberg, March 2007, Lothar Oberauer, TUM.
MR-TOF at ISOLDE Frank Wienholtz - University of Greifswald - for the ISOLTRAP Collaboration GUI –
Christina Dimopoulou Max-Planck-Institut für Kernphysik, Heidelberg IPHE, Université de Lausanne, Exploring atomic fragmentation with COLTRIMS.
Anisotropic dielectronic resonances from magnetic-dipole lines Yuri Ralchenko National Institute of Standards and Technology Gaithersburg, MD, USA ADAS.
Temperature Regulation for High-Precision Mass Measurements at ISOLTRAP Elizabeth Wingfield, Florida State, Tallahassee Advisor: Alexander Herlert.
Neutron scattering systems for calibration of dark matter search and low-energy neutrino detectors A.Bondar, A.Buzulutskov, A.Burdakov, E.Grishnjaev, A.Dolgov,
Can we look back to the Origin of our Universe? Cosmic Photon, Neutrino and Gravitational Wave Backgrounds. Amand Faessler, Erice September 2014 With thanks.
Contribution of Penning trap mass spectrometry to neutrino physics Szilárd Nagy MPI-K Heidelberg, Germany New Instruments for Neutrino Relics and Mass,
NEUTRINO MASS STUART FREEDMAN MEMORIAL SYMPOSIUM BERKELEY, JAN 11, 2014 Hamish Robertson, University of Washington a long wait for a little weight.
Large TPC Workshop, Paris, December 2004Igor G. Irastorza, CEA Saclay NOSTOS: a spherical TPC to detect low energy neutrinos Igor G. Irastorza CEA/Saclay.
TRIGA-TRAP High-precision mass measurements on neutron-rich nuclides and actinides November, 18 th Jens Ketelaer 1 Outline: Motivation Mass measurements.
Addendum to Proposal P-242 to the INTC SEARCH FOR NEW CANDIDATES FOR THE NEUTRINO-ORIENTED PRECISION MASS SPECTROMETRY D. Beck, K. Blaum, M. Block, Ch.
New era of neutrino physics 1.Atmospheric neutrino oscillations (in particular zenith angle dependence of the muon neutrino flux) 2. Solar neutrino deficit.
M. Wójcik for the GERDA Collaboration Institute of Physics, Jagellonian University Epiphany 2006, Kraków, Poland, 6-7 January 2006.
Neutrino-related nuclear mass difference measurements with a few 10 eV uncertainty at SHIPTRAP Enrique MINAYA RAMIREZ Max-Planck-Institut für Kernphysik,
I. Giomataris NOSTOS a new low energy neutrino experiment Detect low energy neutrinos from a tritium source using a spherical gaseous TPC Study neutrino.
M. Wójcik Instytut Fizyki, Uniwersytet Jagielloński Instytut Fizyki Doświadczalnej, Uniwersytet Warszawski Warszawa, 10 Marca 2006.
Outline Sebastian George Tokyo 2007 High-Precision Mass Spectrometry
Non-Exponential Orbital Electron Capture Decays of Hydrogen-Like Ions N. Severijns for the CERN, Gothenburg, Darmstadt, Leuven, Valencia, Münster, Aarhus,
Precision Measurements of Very-Short Lived Nuclei Using an Advances Trapping System for Highly-Charged Ions q / A - selectionCooling processMass measurement.
DOUBLE BETA DECAY TO THE EXCITED STATES (EXPERIMENTAL REVIEW) A.S. BARABASH ITEP, MOSCOW.
1 Neutrino Physics 2 Pedro Ochoa May 22 nd What about solar neutrinos and the solar neutrino problem? KamLAND uses the entire Japanese nuclear.
Direct mass measurement of 58 Ni projectile fragments at CSRe Xinliang Yan Precision nuclear spectroscope group Institute of Modern Physics, Chinese Academy.
The HITRAP Project at GSI For the HITRAP collaboration: Frank Herfurth GSI Darmstadt.
Precision spectroscopy of HCI in a reaction microscope Max-Planck-Institut für Kernphysik, Heidelberg C. Dimopoulou HITRAP Meeting, May 2005, Munich.
A monochromatic neutrino beam for  13 and  J. Bernabeu U. de Valencia and IFIC NO-VE III International Workshop on: "NEUTRINO OSCILLATIONS IN VENICE"
The TRI  P programme at KVI Tests of the Standard Model at low energy Hans Wilschut KVI – Groningen Low energy tests e.g. Time reversal violation precision.
Alexander Herlert High-precision mass measurements for reliable nuclear-astrophysics calculations CERN, PH-IS NIC-IX, CERN, Geneva, June 29, 2006.
KIT - The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH) Florian Fränkle EPS HEP 2009 Krakow 1 KATRIN: An experiment to.
Neutrino oscillations with radioactive sources and large detectors Wladyslaw H. Trzaska on behalf of: Yu.N. Novikov, T. Enqvist, A.N. Erykalov, F. v.Feilitzsch,
Decay scheme studies using radiochemical methods R. Tripathi, P. K. Pujari Radiochemistry Division A. K. Mohanty Nuclear Physics Division Bhabha Atomic.
TRIGA-SPEC: Developement platform for MATS and LaSpec at FAIR Double-beta transition Q-value measurements with TRIGA-TRAP NUSTAR Meeting Christian.
Michael Dworschak, GSI for the SHIPTRAP collaboration
Search for Neutrinoless Double Beta Decay with NEMO-3 Zornitza Daraktchieva University College London On behalf of the NEMO3 collaboration PANIC08, Eilat,
Relativistic Kinematics for the Binding Energy of Nuclear Reactions
New facets of neutrino physics in the electron capture by the nucleus
(Xin-Heng Guo, Bing-Lin Young) Beijing Normal University
Constraining the Properties of the Antiproton
Precision Measurements of Very-Short Lived Nuclei
Review: Prospects of detection of relic antineutrinos by resonant absorption in electron capturing nuclei. J D Vergados & Yu N Novikov, J. Phys. G: Nucl.
Institut de Physique Nucléaire Orsay, France
Penning Trap Mass Spectrometry for Particle Physics
Change of 7Be decay rate under compression
Presentation transcript:

Neutrino Physics with Penning Traps at MPI-K Sergey Eliseev Group of Prof. K. Blaum “Trapped and Cooled Ions“ MPI-K, Heidelberg MPI-K, Heidelberg SFB-Meeting,

ring electrode end cap f-f- f+f+ fzfz - invariance theorem Principle of Penning trap mass spectrometry Sergey Eliseev, SFB-Meeting, Cyclotron frequency: B q/mq/m Confinement Volume D<10  m very precise measurements of f c are possible

Detection techniques Sergey Eliseev, SFB-Meeting, Narrow-band FT-ICR 4.2 K Q ~ ; voltage noise ~ 700 pV/Hz 1/2 current noise ~ 3fA/Hz 1/2 High-precision mass measurements Single ion sensitivity  m/m <

Penning Traps: with an accuracy up to Determination of neutrino & anti-neutrino mass Q-value of a decay (Q=M i -M k ) …………………… Type of neutrino: Majorana or Dirac Determination of mixing angle  13 Sergey Eliseev, SFB-Meeting,

Mass of neutrino & anti-neutrino 3H3H 35 S 3H3H 3H3H 37 Ar & 22 Na 3H3H 3H3H 163 Ho 193 Pt 163 Ho 3H3H 187 Re 163 Ho Sergey Eliseev, SFB-Meeting,

Mass of anti-neutrino: 3 T 3 He -decay SMILETRAP (  Q=1.2 eV) VanDyck 2 2 KATRIN aims for m < 0.2 eV Independent measurement of Q-value of 3 T-decay: gives a check on systematic errors gives a check on systematic errors can remove a free parameter from KATRIN data analysis can remove a free parameter from KATRIN data analysis Sergey Eliseev, SFB-Meeting,

… in new lab Nr.1 (THe) at MPI-K We aim for  Q ( 3 T → 3 He ) =20 meV (  m/m)= 7· Dr. David Pinegar et al. Vibration ‘free‘ floor;  x < 0.1  m ±0.1 K Laboratory Laboratory Temperature stabilization: 0.1K/day Pressure stabilization Vibration ‘free‘ floor: <0.1  m Screening from E-fields: Al-walls Active compensation of B-fields: Helmholtz coils Magnet 6 Tesla 4.2 K-bore magnet Magnetic field stability:  B/B < 17 ppt/h C 4+ Sergey Eliseev, SFB-Meeting,

A Broad-Band FT-ICR Penning Trap System for KATRIN M. Ubieto-Díaz et al. Formation of ion clusters ( 3 T 2n+1 ) +, which decay with Formation of ion clusters ( 3 T 2n+1 ) +, which decay with different end point than 3 T 2 different end point than 3 T 2 Presence of other species (contaminants) Presence of other species (contaminants) Resolving Power: ~10 4 Performance: Sensetivity: <1000 ions Sergey Eliseev, SFB-Meeting,

Mass of Neutrino Sergey Eliseev, SFB-Meeting, Atomic Orbital Electron Capture (Z,A) + e (Z-1,A) h + Q (Z-1,A) h + Q (Z-1,A) g + B i (Z-1,A) g (Z-1,A) h (Z,A) Q EC BiBi Q neutrino is monoenergetic !!! Q can be as small as ~ 0.5 keV Q = E + m c 2 = Q EC – B i (Q EC – B i ) (Q EC – B i ) should be as small as possible smaller Q → higher contribution of m Q EC Q EC should be as small as possible

Mass of Neutrino Do we need to measure the neutrino mass since the antineutrino mass limit is known? Sergey Eliseev, SFB-Meeting, Yes ! to confirm the results taken from tritium measurements (with completely different systematic uncertainties) hopefully can be useful for a check of CPT-conservation for neutrinos

Mass of Neutrino: electron-capture in 163 Ho analysis of calorimetric spectrum m 163 Ho 163 Dy h + e (E ) 163 Dy + E c Sergey Eliseev, SFB-Meeting,

Mass of Neutrino: electron-capture in 163 Ho Q EC m Typical  -calorimetric de-excitation spectrum of EC in 163 Ho Sergey Eliseev, SFB-Meeting, end point with accuracy ~ 1 eV Q EC - value with accuracy ~ 1 eV Cryogenic  -calorimeters ( Group of Prof. Enss, KIP, Uni Heidelberg ) PENTATRAP ( Group of Prof.K. Blaum, MPI-K, HD ) m ~ 1 eV

We aim for  Q ( 163 Ho → 163 Dy ) ≈1 eV; (  m/m) < … in new lab Nr.2 (PENTATRAP) at MPI-K Nuclide Relative uncertainty Reference 4 He1.6* R.S. Van Dyck et al., Phys. Rev. Lett. 92 (2004) C 2 H 2 – 14 N 2 7* S. Rainville et al., Science 303 (2004) S5.0* W. Shi et al., Phys. Rev. A 72 (2005) O1.1* R.S. Van Dyck et al., Int. J. Mass Spectrom. 251 (2006) Si2.2* M. Redshaw et al., Phys. Rev. Lett. 100 (2008) ,132 Xe~ M. Redshaw et al., Phys. Rev. A 79 (2009) Existing Penning TrapsPENTATRAP stable nuclides light masses closed systems radiactive, highly charged nuclides masses up to Uranium open system Improvement of accuracy by more than one order of magnitude !!! Sergey Eliseev, SFB-Meeting,

Accelerator Hall of MPI-K (Heidelberg) PENTATRAP Lab (basement) Temperature stabilization: 0.1K/day Pressure stabilization Damping of vibrations: <1  m (active & passive) Screening from E-fields: Al-walls Active compensation of B-fields: Helmholtz coils EBITEBIT highly charged ions ~3.4 meters 3 He, 4 He ion source EBIT ion source … in new lab Nr.2 (PENTATRAP) at MPI-K Sergey Eliseev, SFB-Meeting,

… in new lab Nr.2 (PENTATRAP) at MPI-K Accuracy of mass measurements < MagnetMagnet Insert Insert Tower of five traps Sergey Eliseev, SFB-Meeting,

… in new lab Nr.2 (PENTATRAP) at MPI-K Accuracy of mass measurements < Monitor trap Preparation trap Precision trap 112.2mm Preparation trap Monitor trap monitoring of B-Field flactuations over the measurement cycle storage/cooling of reference ion / ion of interest substantial reduction of cycle time reduction of systematics due to temporal B-field flactuations high precision mass measurements accuracy ~ ; eV-level Sergey Eliseev, SFB-Meeting,

Mass of Neutrino: search for new candidates Proposal IS473 to the ISOLDE Committee, CERN (2008) “SEARCH FOR NEW CANDIDATES FOR THE NEUTRINO-ORIENTED MASS DETERMINATION BY ELECTRON-CAPTURE“ Yu. Novikov, K. Blaum, S. Eliseev et Al. Q ε =(69±14) keV T 1/2 =444 y E =(-12±14) keV 194 Hg Au K 1-1- Q ε =(50±15) keV T 1/2 =50 ky E ≈(-35±15) keV 202 Pb Tl L Sergey Eliseev, SFB-Meeting,

Penning Traps: with an accuracy up to Q-value of a decay Type of neutrino: Majorana or Dirac Determination of neutrino & anti-neutrino mass …………………… Determination of mixing angle  13 Sergey Eliseev, SFB-Meeting,

Type of Neutrino: Majorana or Dirac neutrinoless double beta decay neutrinoless double EC decay Sergey Eliseev, SFB-Meeting,

Resonant  -less double EC decay (Z,A) (Z-1,A) (Z-2,A) Г εε Q εε B i (2) B j (1) Sergey Eliseev, SFB-Meeting,

εε- transitionQ εε (keV)E=Eγ+B 1 +B 2 (keV)Δ=Q εε -E (keV)First prediction 74 Se+ 74 Ge1209.7(6) (1)(γ+L 1 +L 2 )2.6±0.6D. Frekers (2005) 112 Sn+ 112 Сd1919(4)1925.6(2)(γ+K+K)-6.6±4.0 J. Bernabeu et al., (1983) 152 Gd+ 152 Sm54.6(12) 56.26(K+L 1 ) 54.28(L 1 +K) -1.6± ±1.20 Z. Sujkowski and S. Wycech (2004) 164 Er+ 164 Dy23.7(21)19.01(L 1 +L 1 )4.7±2.1“—————” Candidates for resonant neutrinoless double-capture Starting Project for PENTATRAP !!! Sergey Eliseev, SFB-Meeting,

Penning Traps: with an accuracy up to Q-value of a decay Determination of neutrino & anti-neutrino mass …………………… Type of neutrino: Majorana or Dirac Determination of mixing angle  13 Sergey Eliseev, SFB-Meeting,

Neutrino oscillation length L 32 & mixing angle  13 Probability of electron-neutrino e disappearance Sergey Eliseev, SFB-Meeting, L meters Liquid Argon EC-Nuclide source of monoenergetic e Proposal NeOs Y.N. Novikov, A. Vasiljev, Y. Giomataris, S. Eliseev & J.D. Vergados

Neutrino oscillation length L 32 & mixing angle  13 Nuclide Produced amount (g) T 1/2 E υ =Q ε -B i (keV)L 32 (m) Neutrino Flux (s -1 ) 157 Tb y9.8(3); ≥52 …102* Ho y ≈0.5; ≈0.8; ≈2.2; 2.3; W?21.6 d23.9(20); ≥80.3 …24? 179 Ta d40.3; ; Pt10050 y43.8(3); 53.8(3)…44; 542* Hg?440 y14(3); 25(3) …14(3); 25(3)? 202 Pb?5·10 4 y35(15); 46(15) ? 205 Pb y35(1) 10 9 Sergey Eliseev, SFB-Meeting, Possible candidates for the neutrino source

Neutrino oscillation length L 32 & mixing angle  meters Liquid Argon nat Pt Neutrino source: 100 kg of nat Pt contains 0.1 kg of 193 Pt after 1 year of irradiation at a reactor Count rate: e – flux from 0.1 kg of 193 Pt: ~ 2· /s number of  e – e interactions: ~ 100 events/year Detection of 10 keV recoil electrons Challenge 1 meter LAr Ar-gas V e e e Micromegas Porous shell Sergey Eliseev, SFB-Meeting,

Summary Penning traps can have a significant contribution to the neutrino physics At MPI-K two Penning trap mass spectrometers are set up At MPI-K two Penning trap mass spectrometers are set up to assist the KATRIN – experiment (determination of m - ) to assist the KATRIN – experiment (determination of m - ) We are reviving the neutrino physics in the EC – sector by We are reviving the neutrino physics in the EC – sector by  contributing to determination of neutrino mass (PENTATRAP; 163 Ho) (PENTATRAP; 163 Ho)  determination of mixing angle  32 (PENTATRAP;NeOs; 193 Pt) (PENTATRAP; NeOs; 193 Pt)  contributing to neutrinoless double EC decay (type of the neutrino) (type of the neutrino)