September 28, 2007LGS for SAM – PDR – Optics1 LGS for SAM Optical Design R.Tighe, A.Tokovinin. LGS for SAM Design Review September 2007, La Serena.

Slides:



Advertisements
Similar presentations
Basic Detection Techniques Quasi-Optical techniques Andrey Baryshev Lecture on 18 Oct 2011.
Advertisements

30-meter cabin refurbishment for a large Field Of View: status of on-going study S.Leclercq 28/04/2008.
MCAO Laser Launch Telescope and Periscope Celine d’Orgeville and Jim Catone.
Thomas Stalcup June 15, 2006 Laser Guidestar System Status.
Nonlinear Optics Lab. Hanyang Univ. Chapter 2. The Propagation of Rays and Beams 2.0 Introduction Propagation of Ray through optical element : Ray (transfer)
SAM LGS-v1, Optics, The Laser Box position on SOAR IR Nasmyth Optical Nasmyth At 67.5Deg from IR Nasmyth Note: Laser umbilical cord of 7m has been.
 Light can take the form of beams that comes as close
VARISPOT FS BEHAVIOR IN COLLIMATED AND DIVERGING BEAMS: THEORY AND EXPERIMENTS Liviu Neagu, Laser Department, NILPRP, Bucharest-Magurele, Romania.
Fundamental of Optical Engineering Lecture 4.  Recall for the four Maxwell’s equation:
19/12/06SAM_LGS_1, CTIO, Optics1 SOAR at Horizon Telescope Ring Section= x336mm Laser Box Width= mm.
SLAC National Accelerator Center
Laser Launch System for the LBT Richard Davies Sebastian Rabien Max Planck Institute for Extraterrestrial Physics  Approaches of other observatories 
The Design Improvement of TMT Laser Guide Star Facility Kai Wei Institute of Optics and Electronics (IOE),CAS 1 International Colloquium on Thirty-Meter.
FLAO Alignment Procedures G. Brusa, S. Esposito FLAO system external review, Florence, 30/31 March 2009.
Aperture Pupil (stop) Exit Pupil Entrance Pupil.
Chris A. Mack, Fundamental Principles of Optical Lithography, (c) Figure 3.1 Examples of typical aberrations of construction.
LBT AGW units Design Review Mar.2001 General Concept Performance specifications and goals The off-axis unit The mechanical support structure The control.
System-wide issues Before we get to the telescope System integration and verification at the telescope Operations Maintenance and support.
Keck Next Generation Adaptive Optics Team Meeting 6 1 Optical Relay and Field Rotation (WBS , ) Brian Bauman April 26, 2007.
Nature of light Ray or geometrical optics Wave or physical optics Quantum theory: W p =hf.
WFS Preliminary design phase report I V. Velur, J. Bell, A. Moore, C. Neyman Design Meeting (Team meeting #10) Sept 17 th, 2007.
NGAO Alignment Plan See KAON 719 P. Wizinowich. 2 Introduction KAON 719 is intended to define & describe the alignments that will need to be performed.
Wide-field, triple spectrograph with R=5000 for a fast 22 m telescope Roger Angel, Steward Observatory 1 st draft, December 4, 2002 Summary This wide-field,
NGAO NGS WFS design review Caltech Optical Observatories 31 st March 2010.
Bill White Drive Laser April 16, Drive Laser Commissioning Experience Reminder of requirements on Drive Laser.
JINR: J. Budagov, V. Glagolev, M. Lyablin, G. Shirkov CERN: H. Mainaud Durand, G. Stern A laser based fiducial line for high precision multipoint alignment.
September 28, 2007LGS for SAM – PDR – Optics1 LGS for SAM Optical Alignment R.Tighe, A.Tokovinin. LGS for SAM Design Review September 2007, La Serena.
SAM PDR1 SAM LGS Mechanical Design A. Montane, A. Tokovinin, H. Ochoa SAM LGS Preliminary Design Review September 2007, La Serena.
October 16-18, 2012Working Group on Space-based Lidar Winds 1 AEOLUS STATUS Part 1: Design Overview.
OPTICAL SYSTEM FOR VARIABLE RESIZING OF ROUND FLAT-TOP DISTRIBUTIONS George Nemeş, Astigmat, Santa Clara, CA, USA John A. Hoffnagle,
Optical Design Work for a Laser-Fiber Scanned
Effective lens aperture Deff
1 Kai Wei Institute of Optics and Electronics (IOE),CAS August 30,2010 The TMT Laser Guide Star Facility (LGSF)
MCAO Adaptive Optics Module Mechanical Design Eric James.
MCAO Adaptive Optics Module Subsystem Optical Designs R.A.Buchroeder.
A visible-light AO system for the 4.2 m SOAR telescope A. Tokovinin, B. Gregory, H. E. Schwarz, V. Terebizh, S. Thomas.
What’s already existing?What’s already existing? Laser system & impacts on Optics TransportLaser system & impacts on Optics Transport –Laser power –Focusing.
1 FRIDA Engineering Status 17/05/07 Engineering Status May 17, 2007 F.J. Fuentes InFraRed Imager and Dissector for Adaptive Optics.
ZTFC 12-segment field flattener (and related) options R. Dekany 07 Aug 2012.
PACS IIDR 01/02 Mar 2001 FPFPU Alignment1 D. Kampf KAYSER-THREDE.
PHYS 1442 – Section 004 Lecture #22-23 MW April 14-16, 2014 Dr. Andrew Brandt 1 Cameras, Film, and Digital The Human Eye; Corrective Lenses Magnifying.
Chinese SONG progress and its design introduction Guomin Wang Nanjing Institute of Astronomical Optics & Technology Nanjing.
The AO system for the GTC -an update Nicholas Devaney, Dolores Bello, Bruno Femenía, Alejandro Villegas, Javier Castro Grantecan, Instituto de Astrofísica.
Low order modes sensing for LGS MCAO with a single NGS S. Esposito, P. M. Gori, G. Brusa Osservatorio Astrofisico di Arcetri Italy Conf. AO4ELT June.
OC, June 3, SAM – SOAR Adaptive Module Andrei Tokovinin Nicole van der Bliek.
FLAO system test plan in solar tower S. Esposito, G. Brusa, L. Busoni FLAO system external review, Florence, 30/31 March 2009.
K-D-PR Fabrication and testing of KGMT FSM prototype Oct Ho-Soon Yang, Hak-Yong Kihm, Il-Kwon Moon, Jae-Bong Song, Yun-Woo Lee Korea.
SAM PDR1 S OAR Adaptive Module LGS LGSsystem Andrei Tokovinin SAM LGS Preliminary Design Review September 2007, La Serena.
October 4-5, Electron Lens Beam Physics Overview Yun Luo for RHIC e-lens team October 4-5, 2010 Electron Lens.
September 16, 2008LSST Camera F2F1 Camera Calibration Optical Configurations and Calculations Keith Bechtol Andy Scacco Allesandro Sonnenfeld.
Optical Sciences Center and Steward Observatory University of Arizona
V. Sonnenschein, I. D. Moore, M. Reponen, S. Rothe, K.Wendt.
N A S A G O D D A R D S P A C E F L I G H T C E N T E R I n t e g r a t e d D e s i g n C a p a b i l i t y / I n s t r u m e n t S y n t h e s i s & A.
Plan in summer shutdown Magnet -SF1FF -Swap of QEA magnet - Multipole field of Final Doublet IP-BSM improvement.
Pre-focal wave front correction and field stabilization for the E-ELT
Prof. Charles A. DiMarzio Northeastern University Fall 2003 July 2003
Overview Science drivers AO Infrastructure at WHT GLAS technicalities Current status of development GLAS: Ground-layer Laser Adaptive optics System.
New emittance monitor beamline
1 Progress of the Thomson Scattering Experiment on HSX K. Zhai, F.S.B. Anderson, D.T. Anderson HSX Plasma Laboratory, UW-Madison Bill Mason PSL, UW-Madison,
SL/BI 16/05/1999DIPAC’99 -- JJ Gras -- CERN SL/BI -- Adaptive Optics for the LEP 2 SR Monitors G. Burtin, R.J. Colchester, G. Ferioli, J.J. Gras, R. Jung,
40m Optical Systems & Sensing DRD, G R 1 40m Optical Systems and Sensing Design Requirements Document & Conceptual Design Michael Smith 10/18/01.
July © Chuck DiMarzio, Northeastern University ECEG105/ECEU646 Optics for Engineers Course Notes Part 4: Apertures, Aberrations Prof.
3. Beam optics.
Internal CDR meeting December 20th, 2005
SPARCLAB: PW-class Ti:Sa laser+SPARC
Karl Young, Shaul Hanany, Neil Trappe, Darragh McCarthy
Progress on 1.8m Telescope with 127-element Adaptive Optics at IOE
Optics Alan Title, HMI-LMSAL Lead,
Drive Laser Commissioning Status
Injector Drive Laser Technical Status
Presentation transcript:

September 28, 2007LGS for SAM – PDR – Optics1 LGS for SAM Optical Design R.Tighe, A.Tokovinin. LGS for SAM Design Review September 2007, La Serena

September 28, 2007LGS for SAM – PDR – Optics2 IR Nasmyth Optical Nasmyth Laser Box on one of the serrurier trusses at bent-cass port #2 at 45Deg from IR Nasmyth. Note: a 7m long Laser umbilical cable has been tested. It can be laid out from the base of the truss directly onto the IR-Nasmyth cable-wrap mobile section passing over the elevation bearing and reaching the pillow-block (next picture). Working solution: Laser control and cooler position (on the ledge at the IR Nasmyth pillow- block level). Beam Transfer Laser Launch Telescope The LGS System on SOAR

September 28, 2007LGS for SAM – PDR – Optics3 The Laser umbilical cable handling on SOAR The Laser control & Cooler Rack. Cable length = 7m. Laser cable layout fit-test (yellow line).

September 28, 2007LGS for SAM – PDR – Optics4 truss IR Nasmyth Focus Cable-wrap; mobile Cable-wrap;static Yellow line is the 7m Laser Umbilical Cable Layout Rack for laser control, power and Cooler at pillow-block level Laser Cable and Rack at IR-Nasmyth

September 28, 2007LGS for SAM – PDR – Optics5 LLT IR m4 m3 Laser Box SOAR Elevation Ring The LGS system (GB propagation) Requirements: LLTm1: R=1000mm,  =300mm (pupil). GB 1/e² diameter footprint on LLTm1=260mm. Decided: LLTm2: R=30mm,  =15mm.

September 28, 2007LGS for SAM – PDR – Optics6 Laser-Box UV VIS Soleil-Babinet Compensator 8x Beam Expander Beam Profiler CCD 355nm Tripled Nd:Yag Laser 355nm laser-line Dump switch-Mirror Alignment Mirrors Am1&Am2 (coating nm ) UV Laser Beam Dump Blue Alignment Laser( 473nm) (or better nm?) 8mm Gaussian Beam Exit Window Intra-cavity Shutter LLT Laser Launch Telescope Beam Transfer The LGS system

September 28, 2007LGS for SAM – PDR – Optics7 The optimized LLT: LLT m 1: Diameter(mm) Radius(mm) Conic LLT m 2: Diameter(mm) Radius(mm) Conic mm LLT 30Arcsec Field (on sky) 13 to 24mm1/e² diameter GB Image at 7 to 14km from SOAR M1, respectively. The Laser Launch Telescope

September 28, 2007LGS for SAM – PDR – Optics8 485mm LLT 30Arcsec Field (on sky) 13 to 24mm1/e² diameter GB Image at 7 to 14km from SOAR M1, respectively. OPDComa=57nm OPD rms = 59nm OPD p-v =115nm Strehl Ratio= 0.88 Comatic PSF The working LLT: LLT m 1 (pivots around center of curvature of LLT m 2): Diameter(mm) Radius(mm) Conic LLT m 2: Diameter(mm) Radius(mm) Conic The Laser Launch Telescope

September 28, 2007LGS for SAM – PDR – Optics9 The Laser-Box The S-B compensator (UV): UV-25 (10) from Special Optics CA=25 (or10)mm, Max. Retardation=400nm, Resolution=0.5nm Space needed(Lxwxh)≈110x229.4x165.4mm UV VIS Soleil-Babinet Compensator 8x Beam Expander Beam Profiler CCD 355nm Tripled Nd:Yag Laser 355nm laser-line Dump switch-Mirror Alignment Mirrors Am1&Am2 (coating nm ) UV Laser Beam Dump Blue Alignment Laser (473nm) (or better nm?) ~8mm Gaussian Beam Exit Window Intra-cavity Shutter ~1.5m The Beam Expander (355nm): Galilean, 2-8x magnification. Focusing on sliding rails. The Laser (Tripled Nd:Yag, 355nm): M² spot roundness better than 85%. Waist (single mode radius) = 0.13mm (420mm behind laser output). Waist (mixed modes radius) = mm. Divergence 1.8mRad.

September 28, 2007LGS for SAM – PDR – Optics10 The Beam-Transfer LLT IR m4 m3 Laser Box SOAR Elevation Ring m4: slow active  x,  y. Centers the beam on m3. LLTm1: slow (~1Hz) active  x,  y. Pointing correction loop. Laser box:  x,  y as a whole. Centers the beam on m4. m3: one-time  x,  y adjustments. Aligns LLT optical axis to Beam Transfer.

September 28, 2007LGS for SAM – PDR – Optics11 Polarization Issues ~ /4 Goal: >90% LGS return flux reaches the S-H CCD. UV VIS S-B B-E Laser Linear pol. horizontal 8mm GB circularly polarized WFS Field Stop /4 Retarder SAM LGS WFS The Goal: >90% LGS return flux reaches the S-H CCD.

September 28, 2007LGS for SAM – PDR – Optics12 The Polarization Strategy p=  /2 The Laser pol. is Linear Horizontal. The S-B is ~  4 (adjusted in lab). The S-B is adjusted so that the back-scatter from LGS collected by the SOAR telescope is Circularly Polarized at Nasmyth. The SAM common path and the WFS Optics may introduce some s-p de-phase. This phase retardation is constant and will be measured. If the de-phase error ≥ /14 flux loss ≥ ~10%), it can be compensated in the WFS path.

September 28, 2007LGS for SAM – PDR – Optics13 The Optical Tolerances LGS System Tolerances Surface Shape Tolerance DecenterDec. Tilt ComponentConicRadius Tolerance  r Resol. Tolerance  Resol. (mm) (um)(Deg)(Arcsec) B-E Laser Box--- (0.1) m4--- (0.1) m3--- (0.1) LLTm (0.06) LLTm < (< 0.2) LLT--- (0.1) LLTm1-LLTm2 distance:  Z range=36um (7km to ∞);  Z resolution=2.5um (depth of focus ~1000m). Note1: The tolerance on Radius is driven by the mechanism’s designed focusing range ~0.5mm. Note2: 0.1mm is the ”standard” position accuracy and 1mrad the angular, to be expected in fabrication. Table 6. Summary of tolerancing considerations for the LGS optical components. Merit function: GB waist 1/e² diam.=8mm on LLTm2. GB waist at 10km from SOAR M1. Image Strehl =0.8. Image off-axis = 30”.

September 28, 2007LGS for SAM – PDR – Optics14 The Opto-mechanical Specs Table 11. The complete LGS components positional, angular and adjustment specs for mechanical engineering. ______________________________________________________________________________________ Component Pos.Tol.(mm) Pos.Range (mm) Pos.Res(mm) Angular Tol.(º) Tilt Range(º) Tilt Res.(º) ______________________________________________________________________________________ Laser Head 0.1 N/A N/A N/A N/A N/A Dump-Switch Mirror 0.1 N/A N/A 0.06 In-Out (~30º) (Repeat.~0.06º) Blue Laser 0.1 N/A N/A 0.06 N/A N/A Am1 0.1 N/A N/A 0.06 ±2 N/A Am2 0.1 In-Out (30mm) (Repeat.~10um) 0.06 ±2 N/A B-E ± ± S-B comp. 0.1 N/A N/A N/A N/A N/A Window 0.1 N/A N/A 0.06 N/A N/A Laser-Box (as a unit) 0.1 N/A N/A 0.06 ± m4 0.1 N/A N/A 0.06 ± m3 0.1 N/A N/A 0.06 ± LLTm (Z±0.2,washer/spacers) (Z=0.1washers) 0.06 N/A N/A LLTm ± ± LLT (as a unit) N/A N/A N/A ± LLTm1-LLTm2 (z-axis) 0.1 ± N/A N/A N/A _____________________________________________________________________________________

September 28, 2007LGS for SAM – PDR – Optics15 The Coatings for LGS Optics Component CoatingComponent/Coating CodePlot ManufacturerProvider # Dump-switch mirrorCVI Y UNP 1 Am1Am1CVI BBDS-PM-1037-C 2 Am2Am2CVI BBD1-PM-1037-C 3 Beam expander (8 surf.)Special Optics AR-355 (T>97%) 4 S-B compensator (4 surf.)Special Optics AR-355 (T>97%) 4 Laser box window (2 surf.)CVI W2-PW UV m4m4CVI BBDS-PM-2037-C 2 m3m3CVI Y UNP 1 LLTm2CVI Y3 on Al 5 LLTm1Axsys Tech.CVI ?Y3 on Al 5

September 28, 2007LGS for SAM – PDR – Optics16 The Coatings for LGS Optics Plot2 (BBDS) Plot1 (Y3) Plot3 (BBD1) Plot4

September 28, 2007LGS for SAM – PDR – Optics17 The Coatings for LGS Optics Plot5

September 28, 2007LGS for SAM – PDR – Optics18 Damage Thresholds for LGS Optical Surfaces Opt.laserGBLaser GB Dmg.Thrs.Dmg.ThrsCWPulsedDustFactorDustyOptics Diam.PulsedCW PulsedSafety (absorp.fraction)SafetyFactor El.(mm)(MW/cm2)(kW/cm2) (MW/cm2)Factor MinMaxMinMax Mirr lens13.74 N/A 300N/A ""300" ""300" ""300" If Absorption fraction of the optical element is a: (Where a= (1-R) for mirrors and (1-T) for lenses). And df: is the T(orR) loss due to absorption by dust. Safety Factor: (sf clean )= a(Dam.Thres.power)/a(GBpower) Safety Factor: (sf dusty )= Damage Threshold/((1-df)(GB)+df/a(GB)) Conclusion: Only element with some risk (in ~6month period) is the laser beam-dump switching mirror.

September 28, 2007LGS for SAM – PDR – Optics19 Issues for Discussion and To Do List Discussion: LLTm1 tip-Tilt actuators. LLTm2 focusing. LLTm1 to m2 spacing control ? To Do: LLTm2: last search for a paraboloidal mirror. Do the Optics Procurement. Do the Lab experiments for laser beam and polarization control.