Chapter 9 Electrons in Atoms and the Periodic Table

Slides:



Advertisements
Similar presentations
Chapter 4 Arrangement of Electrons in Atoms
Advertisements

1. To describe Rutherford’s model of the atom 2. To explore the nature of electromagnetic radiation 3. To see how atoms emit light 11.1 Objectives.
10 Modern Atomic Theory and the Periodic Table
Modern Atomic Theory Chapter 10
Chapter 11 Modern Atomic Theory. Copyright © Houghton Mifflin Company. All rights reserved. 11 | 2 Rutherford’s Atom The concept of a nuclear atom (charged.
Chapter 5 - Electronic Structure and Periodic Trends
Mark S. Cracolice Edward I. Peters Mark S. Cracolice The University of Montana Chapter 11 Atomic Theory: The Quantum.
Electrons and Quantum Mechanics
Electronic Structure of Atoms Chapter 6 BLB 12 th.
Modern Atomic Theory Notes
Introductory Chemistry, 2nd Edition Nivaldo Tro
ELECTRONS IN THE ATOM UNIT 4.
Chapter 4 Review Test is Thursday, December 22nd.
Chapter 10: Modern atomic theory Chemistry 1020: Interpretive chemistry Andy Aspaas, Instructor.
2006, Prentice Hall Chapter 9 Electrons in Atoms and the Periodic Table.
Electromagnetic Radiation light is one of the forms of energy technically, light is one type of a more general form of energy called electromagnetic radiation.
Chapter 5 Electrons in Atoms Wave and Particle Models of Light
Copyright©2004 by Houghton Mifflin Company. All rights reserved. 1 Introductory Chemistry: A Foundation FIFTH EDITION by Steven S. Zumdahl University of.
Day 1. Move like planets around the sun.  In specific circular paths, or orbits, at different levels.  An amount of fixed energy separates one level.
Rutherford’s Atom Electromagnetic Radiation Emission of Energy by Atoms Energy Levels of Hydrogen Atomic Models Hydrogen Orbitals Electron Arrangements.
Roy Kennedy Massachusetts Bay Community College Wellesley Hills, MA Introductory Chemistry, 2 nd Edition Nivaldo Tro Chapter 9 Electrons in Atoms and the.
1 Modern Atomic Theory Chapter Rutherford’s Atom Rutherford showed: –Atomic nucleus is composed of protons (positive) and neutrons (neutral). –The.
Roy Kennedy Massachusetts Bay Community College Wellesley Hills, MA Introductory Chemistry, 2 nd Edition Nivaldo Tro Chapter 9 Electrons in Atoms and the.
Chapter 9 Electrons in Atoms and the Periodic Table
By Steven S. Zumdahl & Donald J. DeCoste University of Illinois Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry,
Chapter 4 Electron Configurations. Early thoughts Much understanding of electron behavior comes from studies of how light interacts with matter. Early.
Chapter 4 Arrangement of Electrons in Atoms 4.1 The Development of a New Atomic Model.
Electronic Configurations of Atoms
Electromagnetic Radiation
Chapter 11 Modern Atomic Theory Chemistry 101. Structure of atom Rutherford’s model - (Source of  particles) e-e- +
Electrons in Atoms Chapter 5. Duality of Light Einstein proved that matter and energy are related E = mc 2 Einstein proved that matter and energy are.
Electrons in Atoms. Models of the Atom – A History John Dalton John Dalton atom was solid, indivisible mass atom was solid, indivisible mass J.J. Thomson.
Section 11.1 Atoms and Energy 1.To describe Rutherford’s model of the atom 2.To explore the nature of electromagnetic radiation 3.To see how atoms emit.
Chapter 4 The Modern Model of the Atom. The Puzzle of the Atom  Protons and electrons are attracted to each other because of opposite charges  Electrically.
Electrons in Atoms Chapter 5 General Chemistry. Objectives Understand that matter has properties of both particles and waves. Describe the electromagnetic.
LIGHT AND THE QUANTUM MODEL. WAVES Wavelength ( ) - length of one complete wave Frequency ( ) - # of waves that pass a point during a certain time period.
Development of Atomic Models
Unit 3 - The Modern Atom What is our model of the Atom? What is wrong with it? Homework: pg Q&P # 7, 8, 12-14, 20, 25, 31, 32, 36-39, 45, 50,
Electrons in atoms and the Periodic table
CHAPTER 12 ELECTRONS IN ATOMS BRODERSEN HONORS CHEM 2013/14.
Ernest Rutherford’s Model l Discovered dense positive piece at the center of the atom- “nucleus” l Electrons would surround and move around it, like planets.
Chapter 5 - Electronic Structure and Periodic Trends Electromagnetic Radiation Atomic Spectra and Energy Levels Energy Levels, Sublevels, & Orbitals Orbital.
Chapter 5: Electrons in Atoms. Why focus on electrons? Scientists wanted to know why certain elements behaved similarly to some elements and differently.
Quantum Theory and the Electronic Structure of Atoms Chapter 7 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
End Show Slide 1 of 20 Ch. 5: Models of the Atom What you need to know: Chapter 5 Timeline pp (theory and people) Definitions: quantum mechanical.
Chapter 5.  Scientific Models  Models are things used to represent real phenomena.  simplify and explain complex realities.  can take many forms 
Unit 3 - The Modern Atom What is our model of the Atom? What is wrong with it? Homework: pg Q&P # 7, 8, 12-14, 20, 25, 31, 32, 36-39, 45, 50,
CHAPTER 5 Electrons in Atoms. Development of Atomic Models Dalton – Remember atomic theory? – Atom considered indivisible Thomson – “plum pudding atom”
Chapter Rutherford’s Atom: To describe Rutherford’s model of the atom Energy and Light: To explore the nature of electromagnetic radiation.
Light and Energy Electromagnetic Radiation is a form of energy that emits wave-like behavior as it travels through space. Examples: Visible Light Microwaves.
CHAPTER 5 The wave nature of light Electromagnetic radiation: is a form of energy that exhibits wavelike behavior as it travels through space. Examples:
Chapter 5 Review. Wave Nature of Light Wavelength- Wavelength- The distance between two consecutive peaks or troughs. Frequency- Frequency- The number.
Chapter 11 Notes Electrons in Atoms: Modern Atomic Theory.
Unit 4 Energy and the Quantum Theory. I.Radiant Energy Light – electrons are understood by comparing to light 1. radiant energy 2. travels through space.
Bohr’s Model Rutherford’s model didn’t explain the arrangement of electrons around the nucleus.
Electron in Atoms Chapter 5. Rutherford’s Atomic Model Discovered dense positive piece at the center of the atom- “nucleus” Electrons would surround.
CHAPTER 11 NOTES MODERN ATOMIC THEORY RUTHERFORD’S MODEL COULD NOT EXPLAIN THE CHEMICAL PROPERTIES OF ELEMENTS.
1 Chapter 3B Modern Atomic Theory. 2 CHAPTER OUTLINE  Waves Waves  Electromagnetic Radiation Electromagnetic Radiation  Dual Nature of Light Dual Nature.
The Quantum Mechanical Atom Chapter 8. Electron Distribution When 2 or more atoms join to form a compound, the nuclei of the atoms stay relatively far.
Chapter 5 Electrons in Atoms. Wave Nature of Light Wavelength (λ) – shortest distance between equivalent points on a continuous wave (unit: m or nm) Ex:
Chapter 4 Electron Configurations. Waves Today scientists recognize light has properties of waves and particles Waves: light is electromagnetic radiation.
Chapter 5.  Energy transmitted from one place to another by light in the form of waves  3 properties of a wave;  Wavelength  Frequency  Speed.
Chapter 7 Atomic Structure.
Chapter 4 Electrons In Atoms.
Chapter 9 Electrons in Atoms and the Periodic Table
5-1 Quantum Theory of the atom
Electrons in Atoms Chapter 5
Chapter 5 Introductory Assignment
Tro's "Introductory Chemistry", Chapter 9
Development of a New Atomic Model
Presentation transcript:

Chapter 9 Electrons in Atoms and the Periodic Table Helium gas He has 2 protons and if neutral how many electrons? 2006, Prentice Hall

CHAPTER OUTLINE Waves Electromagnetic Radiation Dual Nature of Light Bohr Model of Atom Quantum Mechanical Model of Atom Electron Configuration Electron Configuration & Periodic Table Abbreviated Electron Configuration Periodic Properties

Blimps blimps float because they are filled with a gas that is less dense than the surrounding air early blimps used the gas hydrogen, however hydrogen’s flammability lead to the Hindenburg disaster blimps now use helium gas, which is not flammable

Why is hydrogen gas diatomic but helium gas not? Because hydrogen is reactive and helium is inert. What makes hydrogen reactive? Recall that when elements are arranged in order of increasing atomic number (# of protons), certain sets of properties periodically recur -All group I elements have similar reactivity -All noble gases are inert -Alkali metals- +1; metals -Alkaline earth metals- +2; metals -Halogens- -1; nonmetals -Noble gases- 0; nonmetals We need a theory/model that would explain why these occur:

Classical View of the Universe since the time of the ancient Greeks, the stuff of the physical universe has been classified as either matter or energy we define matter as the stuff of the universe that has mass and volume therefore energy is the stuff of the universe that does not have mass and volume we know that matter is ultimately composed of particles, and the properties of particles determine the properties we observe energy therefore should not be composed of particles, in fact the thing that all energy has in common is that it travels in waves

Light: Electromagnetic Radiation light is a form of energy light is one type of energy called electromagnetic radiation with electric and magnetic field components and travels in waves

Electromagnetic Waves velocity = c = speed of light its constant! = 2.997925 x 108 m/s (m•sec-1) in vacuum all types of light energy travel at the same speed amplitude = A = measure of the intensity of the wave, “brightness” height of the wave wavelength = l = distance between crests generally measured in nanometers (1 nm = 10-9 m) same distance for troughs or nodes determines color frequency = n = how many peaks pass a point in a second generally measured in Hertz (Hz), 1 Hz = 1 wave/sec = 1 sec-1

Electromagnetic Waves Wavelength (λ) is the distance between any 2 successive crests or troughs. Amplitude Nodes

inversely proportional WAVES Frequency (nu,) is the number of waves produced per unit time. Wavelength and frequency are inversely proportional. Speed tells how fast waves travel through space. inversely proportional As wavelength of a wave increases its frequency decreases 10.1

ELECTROMAGNETIC RADIATION Energy travels through space as electromagnetic radiation. This radiation takes many forms, such as sunlight, microwaves, radio waves, etc. In a vacuum, all electromagnetic waves travel at the speed of light (3.00 x 108 m/s), and differ from each other in their frequency and wavelength.

ELECTROMAGNETIC RADIATION These waves range from -rays (short λ, high f) to radio waves (long λ, low f). The classification of electromagnetic waves according to their frequency is called electromagnetic spectrum. Long wavelength Low frequency Short wavelength High frequency

ELECTROMAGNETIC RADIATION Visible light is a small part of the EM spectrum Infrared waves have longer λ but lower  than visible light X-rays have longer λ but lower  than -rays 10.2

Particles of Light Albert Einstein and other scientists in the early 20th century showed that wave properties do not completely explain electromagnetic radiation (EM) and showed that EM was composed of particle-like properties called photons photons are particles of light energy each wavelength of light has photons that have a different amount of energy the longer the wavelength, the lower the energy of the photons

DUAL NATURE OF LIGHT Scientists also have much evidence that light beams act as a stream of tiny particles, called photons. Red light has longer wavelength and less energy than blue light A photon of red light A photon of blue light

DUAL NATURE OF LIGHT Scientists, therefore, use both the wave and particle models for explaining light. This is referred to as the wave-particle nature of light. Scientists also discovered that when atoms are energized at high temperatures or by high voltage, they can radiate light. Neon lights are an example of this property of atoms.

Light’s Relationship to Matter He Atoms can acquire extra energy, but they must eventually release it When atoms emit energy, it always is released in the form of light However, atoms don’t emit all colors, only very specific wavelengths in fact, the spectrum of wavelengths can be used to identify the element Hg

When an atom absorbs energy it reemits it as light emission spectrum of Hydrogen White Light Source Emits at every wavelength (all colors) also called a continuous spectrum H produces its own unique and distinctive emission spectrum

Spectra

The Bohr Model of the Atom The Nuclear Model of the atom does not explain how the atom can gain or lose energy Neils Bohr developed a model of the atom to explain the how the structure of the atom changes when it undergoes energy transitions Bohr’s major idea was that the energy of the atom was quantized, and that the amount of energy in the atom was related to the electron’s position in the atom quantized means that the atom could only have very specific amounts of energy 1885 to1962 Nobel Prize in Physics in 1922

The Bohr Model of the Atom Electron Orbits the Bohr Model, electrons travel in orbits around the nucleus more like shells than planet orbits the farther the electron is from the nucleus the more energy it has Rank the electrons from highest to lowest energy e- e- e- e- e-

The Bohr Model of the Atom Orbits and Energy each orbit has a specific amount of energy the energy of each orbit is characterized by an integer - the larger the integer, the more energy an electron in that orbit has and the farther it is from the nucleus the integer (whole #s), n, is called a quantum number Bohr orbits are like steps in a ladder. It is possible to be on one step or another, but it is impossible to be between steps.

BOHR MODEL OF ATOM In this model, the electrons could only occupy particular energy levels, and could “jump” to higher levels by absorbing energy. Neils Bohr, a Danish physicist, studied the hydrogen atom extensively, and developed a model for the atom that was able to explain the line spectrum. Bohr’s model of the atom consisted of electrons orbiting the nucleus at different distances from the nucleus, called energy levels.

BOHR MODEL OF ATOM The lowest energy level is called ground state, and the higher energy levels are called excited states. When electrons absorb energy through heating or electricity, they move to higher energy levels and become excited. energy

BOHR MODEL OF ATOM When excited electrons return to the ground state, energy is emitted as a photon of light is released. The color (wavelength) of the light emitted is determined by the difference in energy between the two states (excited and ground). Lower energy transition give off red light Higher energy transition give off blue light

The Bohr Model of the Atom Ground and Excited States The lowest amount of energy hydrogen’s one electron can have corresponds to being in the n = 1 orbit –this is the ground state when the atom gains energy, the electron leaps to a higher energy orbit –this is the excited state the atom is less stable in an excited state, and so it will release the extra energy to return to the ground state either all at once or in several steps

The Bohr Model of the Atom Hydrogen Spectrum every hydrogen atom has identical orbits, so every hydrogen atom can undergo the same energy transitions however, since the distances between the orbits in an atom are not all the same, no two leaps in an atom will have the same energy the closer the orbits are in energy, the lower the energy of the photon emitted lower energy photon = longer wavelength therefore we get an emission spectrum that has a lot of lines that are unique to hydrogen

The Bohr Model of the Atom Hydrogen Spectrum Which e- has longer wavelength and lower energy (red, violet or blue-green)?

The Bohr Model of the Atom Success and Failure the mathematics of the Bohr Model very accurately predicts the spectrum of hydrogen however its mathematics fails when applied to multi-electron atoms it cannot account for electron-electron interactions a better theory was needed

QUANTUM MECHANICAL MODEL OF ATOM In 1926 Erwin Shrödinger created a mathematical model that showed electrons as both particles and waves. This model was called the quantum mechanical model. This model predicted electrons to be located in a probability region called orbitals. An orbital is defined as a region around the nucleus where there is a high probability of finding an electron. 1887 to 1961 Nobel Prize in Physics in 1933

Orbits vs. Orbitals Pathways vs. Probability Orbital – acts as a wave and particle thus could end up anywhere in a probability map Orbit – acts as a particle and follows a well-defined path

QUANTUM MECHANICAL MODEL OF ATOM Based on this model, there are discrete principal energy levels within the atom. Principal energy levels are designated by n. The electrons in an atom can exist in any principal energy level. As n increases, the energy of the electron increases

QUANTUM MECHANICAL MODEL OF ATOM Each principal energy level is subdivided into sublevels. The sublevels are designated by the letters s, p, d and f. As n increases, the number of sublevels increases. 10.7, 10.8

QUANTUM MECHANICAL MODEL OF ATOM The number of orbitals within the sublevels vary with their type. Within the sublevels, the electrons are located in orbitals. The orbitals are also designated by the letters s, p, d and f. s sublevel = 1 orbital = 2 electrons p sublevel = 3 orbitals = 6 electrons d sublevel = 5 orbitals = 10 electrons f sublevel = 7 orbitals = 14 electrons An orbital can hold a maximum of 2 electrons

How does the 1s Subshell Differ from the 2s Subshell

Probability Maps & Orbital Shape s Orbitals

Probability Maps & Orbital Shape p Orbitals

Probability Maps & Orbital Shape d Orbitals

ELECTRON CONFIGURATION The distribution of electrons into the various energy shells and subshells in an atom’s ground state is called its electron configuration The electrons occupy the orbitals from the lowest energy level to the highest level (Aufbau Principal). The energy of the orbitals on any level are in the following order: s < p < d < f. Each orbital on a sublevel must be occupied by a single electron before a second electron enters (Hund’s Rule).

ELECTRON CONFIGURATION Electron configurations can be written as: Number of electrons in orbitals 2 p6 Principal energy level Type of orbital

ELECTRON CONFIGURATION Another notation, called the orbital notation is shown below: Electrons in orbital with opposing spins Principal energy level 1 s Type of orbital

Filling an Orbital with Electrons each orbital may have a maximum of 2 electrons with opposite spins Pauli Exclusion Principle electrons spin on an axis generating their own magnetic field when two electrons are in the same orbital, they must have opposite spins so there magnetic fields will cancel

ELECTRON CONFIGURATION ↑ 1s H 1s1 Hydrogen has 1 electron. It will occupy the orbital of lowest energy which is the 1s. ↑ 1s ↓ He 1s2 Helium has two electrons. Both helium electrons occupy the 1s orbital with opposite spins.

ELECTRON CONFIGURATION ↑ ↓ 1s ↑ ↓ 2s ↑ 2p B 1s22s22p1 Boron has the first p electron. The three 2p orbitals have the same energy. It does not matter which orbital fills first. ↑ ↓ 1s ↑ ↓ 2s ↑ 2p ↓ ↑ C 1s22s22p2 The second p electron of carbon enters a different p orbital than the first p due to Hund’s Rule.

ELECTRON CONFIGURATION ↑ ↓ 1s ↑ ↓ 2s ↑ 2p ↓ ↑ ↓ ↑ ↓ Ne 1s22s22p6 The last p electron for neon pairs up with the last lone electron and completely fills the 2nd energy level. ↑ 3s Na 1s22s22p6 3s1 Sodium has 11 electron. The first 10 will occupy the orbitals of energy levels 1 and 2. core electrons valence electron

ELECTRON CONFIGURATION As electrons occupy the 3rd energy level and higher, some anomalies occur in the order of the energy of the orbitals. Knowledge of these anomalies is important in order to determine the correct electron configuration for the atoms.

ELECTRON CONFIG. & PERIODIC TABLE 10.15

ELECTRON CONFIG. & PERIODIC TABLE The horizontal rows in the periodic table are called periods. The period number corresponds to the number of energy levels that are occupied in that atom. The vertical columns in the periodic table are called groups or families. For the main-group elements, the group number corresponds to the number of electrons in the outermost filled energy level (valence electrons).

ELECTRON CONFIG. & PERIODIC TABLE One energy level 4 energy levels 3 energy levels

ELECTRON CONFIG. & PERIODIC TABLE 3 valence electrons 1 valence electron 5 valence electrons

ELECTRON CONFIG. & PERIODIC TABLE Note that elements in the same group have similar electron configurations. The valence electrons configuration for the elements in periods 1-3 are shown below. 10.15

Arrangement of orbitals in the periodic table ELECTRON CONFIG. & PERIODIC TABLE Arrangement of orbitals in the periodic table 10.16

d orbital numbers are 1 less than the period number ELECTRON CONFIG. & PERIODIC TABLE d orbital numbers are 1 less than the period number 10.16

f orbital numbers are 2 less than the period number ELECTRON CONFIG. & PERIODIC TABLE f orbital numbers are 2 less than the period number 10.16

ABBREVIATED ELECTRON CONFIG. When writing electron configurations for larger atoms, an abbreviated configuration is used. In writing this configuration, the non-valence (core) electrons are summarized by writing the symbol of the noble gas prior to the element in brackets followed by configuration of the valence electrons.

ABBREVIATED ELECTRON CONFIG. Previous noble gas K Z = 19 1s22s22p63s23p6 4s1 valence electron core electrons [Ar] 4s1

ABBREVIATED ELECTRON CONFIG. Z = 35 1s22s22p63s23p6 4s2 3d10 4p5 valence electrons core electrons [Ar] 4s23d104p5

Electron Configuration of As from the Periodic Table 1 2 3 4 5 6 7 2A 3A 4A 5A 6A 7A 3d10 Ar As 4s2 4p3 As = [Ar]4s23d104p3 As has 5 valence electrons

TRENDS IN PERIODIC PROPERTIES The electron configuration of atoms are an important factor in the physical and chemical properties of the elements. Some of these properties include: atomic size, ionization energy and metallic character. These properties are commonly known as periodic properties and increase or decrease across a period or group, and are repeated in each successive period or group.

ATOMIC SIZE The size of the atom is determined by its atomic radius, which is the distance of the valence electron from the nucleus. For each group of the representative elements, the atomic size increases going down the group, because the valence electrons from each energy level are further from the nucleus.

ATOMIC SIZE

Be (4p+ & 4e-) Mg (12p+ & 12e-) Ca (20p+ & 20e-) Group IIA Be Mg Ca 4

ATOMIC SIZE The atomic radius of the representative elements are affected by the number of protons in the nucleus (nuclear charge). For elements going across a period, the atomic size decreases because the increased nuclear charge of each atom pulls the electrons closer to the nucleus, making it smaller.

ATOMIC SIZE

Li (3p+ & 3e-) Be (4p+ & 4e-) B (5p+ & 5e-) C (6p+ & 6e-) Period 2 2e- 1e- 3 p+ 2e- 4 p+ 2e- 3e- 5 p+ Li (3p+ & 3e-) Be (4p+ & 4e-) B (5p+ & 5e-) 6 p+ 2e- 4e- 8 p+ 2e- 6e- 10 p+ 2e- 8e- C (6p+ & 6e-) O (8p+ & 8e-) Ne (10p+ & 10e-)

IONIZATION ENERGY Na (g) + IE Na+ + e- The ionization energy is the energy required to remove a valence electron from the atom in a gaseous state. When an electron is removed from an atom, a cation (+ ion) with a 1+ charge is formed. Na (g) + IE Na+ + e-

IONIZATION ENERGY The ionization energy decreases going down a group, because less energy is required to remove an electron from the outer shell since it is further from the nucleus. Larger atom Less IE

IONIZATION ENERGY Going across a period, the ionization energy increases because the increased nuclear charge of the atom holds the valence electrons more tightly and therefore it is more difficult to remove.

IONIZATION ENERGY In general, the ionization energy is low for metals and high for non-metals. Review of ionization energies of elements in periods 2-4 indicate some anomalies to the general increasing trend.

IONIZATION ENERGY Be 1s2 2s2 N 1s2 2s2 2p3 B 1s2 2s2 2p1 O 1s2 2s2 2p4 These anomalies are caused by more stable electron configurations of the atoms in groups 2 (complete “s” sublevel) and group 5 (half-filled “p” sublevels) that cause an increase in their ionization energy compared to the next element. More stable (1/2 filled) Higher IE More stable Higher IE Be 1s2 2s2 N 1s2 2s2 2p3 B 1s2 2s2 2p1 O 1s2 2s2 2p4

METALLIC CHARACTER Metallic character is the ability of an atom to lose electrons easily. This character is more prevalent in the elements on the left side of the periodic table (metals), and decreases going across a period and increases for elements going down a group.

Most metallic elements Least metallic elements CHARACTER Most metallic elements Least metallic elements

Larger due to less nuclear charge Example 1: Select the element in each pair with the larger atomic radius: or K Br Larger due to less nuclear charge

Highest IE due to most nuclear charge Example 2: Indicate the element in each set that has the higher ionization energy and explain your choice: or F N C Highest IE due to most nuclear charge

THE END