Volatility Spillovers and Financial Contagion in the CEE Stock Markets MSc. Student: ânaru Mihai Supervisor: Professor PhD. Moisă Altăr Academy of Economic.

Slides:



Advertisements
Similar presentations
Ordinary least Squares
Advertisements

ARCH (Auto-Regressive Conditional Heteroscedasticity)
1 Market Efficiency in the Emerging Securitized Real Estate Markets Felix Schindler Centre for European Economic Research (ZEW) Milan, 26 th of June 2010.
The role of inflation expectations in the New EU Member States Student: DORINA COBÎSCAN Supervisor: PhD. Professor MOISĂ ALTĂR Bucharest, 2010 THE ACADEMY.
Introduction Data and simula- tion methodology VaR models and estimation results Estimation perfor- mance analysis Conclusions Appendix Doctoral School.
Determinants of Sovereign Risk Premiums for European Emerging Markets (From Saints to Sinners) Tomislav Ridzak & Mirna Dumicic Financial Stability Department.
Openness, Economic Growth, and Human Development: Evidence from South Asian countries from Middlesex University Department of Economics and.
Determinants of Banking System Fragility: A Regional Perspective Hans Degryse (Tilburg University & CEPR) Muhammad Ather Elahi (State Bank of Pakistan)
Could Dynamic Variance-Covariance Settings and Jump Diffusion Techniques Enhance the Accuracy of Risk Measurement Models? A Reality Test Li, Ming-Yuan.
PREDICTABILITY OF NON- LINEAR TRADING RULES IN THE US STOCK MARKET CHONG & LAM 2010.
International Fixed Income Topic IVC: International Fixed Income Pricing - The Predictability of Returns.
Spline Garch as a Measure of Unconditional Volatility and its Global Macroeconomic Causes Robert Engle and Jose Gonzalo Rangel NYU and UCSD.
Multivariate volatility models Nimesh Mistry Filipp Levin.
Volatility Spillovers and Asymmetry in Real Estate Stock Returns Kustrim Reka University of Geneva (Switzerland) Martin Hoesli University of Geneva (Switzerland),
Risk Premium Puzzle in Real Estate: Are real estate investors overly risk averse? James D. Shilling DePaul University Tien Foo Sing National University.
Measuring market risk:
1 Who has more influence on Asian Stock Markets around the Subprime Mortgage Crisis - the U.S. or China? Chien-Chung Nieh* Chao-Hsiang Yang** Yu-Sheng.
1 Is Transparency Good For You? by Rachel Glennerster, Yongseok Shin Discussed by: Campbell R. Harvey Duke University National Bureau of Economic Research.
Instruments of Financial Markets at Studienzentrum Genrzensee Switzerland. August 30-September 17, 2004 Course attended by: Muhammad Arif Senior Joint.
1 Forecasting BET Index Volatility MSc.: Răzvan Ghelmeci Supervisor: Prof. Moisă Altăr.
How volatile are East Asian stocks during high volatility periods? A workshop paper by Carlos C. Bautista College of Business Administration University.
Academy of Economic Studies Doctoral School of Finance and Banking Determinants of Current Account for Central and Eastern European Countries MSc Student:
Measuring Sovereign Contagion in Europe Presented by Jingjing XIA Caporin, Pelizzon, Ravazzolo, and Rigobon (2013)
DETERMINANTS OF INFLATION IN ROMANIA Student: COVRIG NICOLAE Supervisor: Prof. MOISĂ ALTĂR.
Foreign banks and financial stability in emerging markets - evidence from the global financial crisis © F r a n k f u r t – S c h o o l. d e 17th Dubrovnik.
Short-term Hedging with Futures Contracts Supervisor: Professor Mois ă Alt ă r MSc Student Iacob Călina-Andreea The Academy of Economic Studies Bucharest.
PRESENTED BY WARREN TIBESIGWA, MAKERERE UNIVERSITY BUSINESS SCHOOL WILL KABERUKA, MAKERERE UNIVERSITY BUSINESS SCHOOL 16/10/2014 ORSEA PAPER Volatility.
Financial Econometrics II Lecture 2. 2 Up to now: Tests for informational WFE assuming constant expected returns Autocorrelations Variance ratios Time.
Integration of Center and Eastern European Stock Markets MSc student IOSIF ANAIDA Coordinator Professor Moisă Altăr The Academy of Economic Studies Doctoral.
Contagious Currency Crises - Dissertation Paper- Student: Dumitru Delia Supervisor: Prof. Moisã Altãr The Academy of Economic Studies Doctoral School of.
10-1 Governance and Profitability Around the World Vince Hooper, Ah Boon Sim and Asfandyar Uppal School of Banking and Finance The University of New South.
Determinants of the velocity of money, the case of Romanian economy Dissertation Paper Student: Moinescu Bogdan Supervisor: Phd. Professor Moisă Altăr.
Global crises and equity market contagion G. Bekaert (Columbia), M. Ehrmann, M. Fratzscher and A. Mehl (ECB) The Economics and Econometrics of Recurring.
Determinants of Credit Default Swap Spread: Evidence from the Japanese Credit Derivative Market.
1 Hybrid versus Highbred -A New Approach to Combine Economic Models with Time-series Analyses Ming-Yuan Leon Li Quantitative Finance (SSCI journal), 10,
Academy of Economic Studies Doctoral School of Finance and Banking DISSERTATION PAPER BUDGET DEFICIT AND INFLATION MSc. Student : Marius Serban Supervisor.
Literature Review ZHU Cai AMA. Contents Paper-Searching by Journals 2 Paper -Searching by Authors 3 Results of Elementary Analysis 4 Suggestions 5 Introduction.
ACCOUNTING- AND FINANCE-BASED MEASURES OF RISK. Introduction An important objective of the analysis of financial statements in general and that of ratios.
Various topics Petter Mostad Overview Epidemiology Study types / data types Econometrics Time series data More about sampling –Estimation.
Academy of Economic Studies DOCTORAL SCHOOL OF FINANCE AND BANKING Bucharest 2003 Long Memory in Volatility on the Romanian Stock Market Msc Student: Gabriel.
1 Econometric Clinic TT3 meeting 2012/06/14 G. Amisano and O. Tristani DG-Research European Central Bank Fundamentals and contagion mechanisms in the euro.
Ephraim CLARK, CONSTRUCTING AND TESTING THE “WORLD MARKET PORTFOLIO” FOR DOLLAR BASED INVESTORS Ephraim.
By Nafiu Bashir Abdussalam Department of Economics Bayero University, Kano And Jamaladeen Abubakar Department of.
Ray Y Chou Institute of Economics Academia Sinica
Determinants of Capital Structure Choice: A Structural Equation Modeling Approach Cheng F. Lee Distinguished Professor of Finance Rutgers, The State University.
NAIRU Estimation in Romania (including a comparison with other transition countries) Student: Otilia Iulia Ciotau Supervisor: Professor Moisa Altar THE.
“Does Openness to Trade Make Countries More Vulnerable to Sudden Stops, or Less? Using Gravity to Establish Causality” Comments Alejandro Izquierdo Second.
Dissertation paper Modelling and Forecasting Volatility Index based on the stochastic volatility models MSc Student: LAVINIA-ROXANA DAVID Supervisor: Professor.
Robert Engle UCSD and NYU and Robert F. Engle, Econometric Services DYNAMIC CONDITIONAL CORRELATIONS.
Academy of Economic Studies Doctoral School of Finance and Banking - DOFIN VOLATILITY AND LONG TERM RELATIONS IN EQUITY MARKETS : Empirical Evidence from.
DETERMINANTS OF SPREADS OF ROMANIAN SOVEREIGN BONDS - an application on the EMBIG spreads – Student: BERBECARU CLAUDIA-FLORIANA Supervisor: Professor MOISĂ.
Run length and the Predictability of Stock Price Reversals Juan Yao Graham Partington Max Stevenson Finance Discipline, University of Sydney.
REGIME CHANGES AND FINANCIAL MARKETS Prepared for Topics in Quantitative Finance | Abhishek Rane - Andrew Ang and Allan Timmermann.
Spillover effect: A study for major capital markets and Romanian capital market MSc Student: Cristina Belciuganu Coordinator Professor: Moisa Altar July.
Portfolio Management Unit – III Session No. 22 Topic: Economic Analysis Unit – III Session No. 22 Topic: Economic Analysis.
Econ616 – Spring 2006 The Spillover Effects of Deposit Rate between Japan and the United States: a Bivariate GARCH Model Yan Hu.
1 Dynamic Hedge Ratio for Stock Index Futures: Application of Threshold VECM Written by Ming-Yuan Leon Li Department of Accountancy Graduate Institute.
A). Dependence between Commodities (energy or/ and non-energy) and macroeconomic variables (exchange rate, interest rate and index price) © The Author(s)
International portfolio diversification benefits: Cross-country evidence from a local perspective Authors of the Paper: Joost Driessen Luc Laeven Presented.
STOCK BOND MONET MARKET AND EXCHANGE RATE MEASURING INTERNATIONAL FINANCIAL TRANSMISSION Califano Michele Calorì Federica Čermák Jiří Krbilova Helena Lucchetta.
Econometric methods of analysis and forecasting of financial markets Lecture 6. Models of restricted dependent variables.
International portfolio diversification benefits: Cross-country evidence from a local perspective By J. Driessen and L. Laeven Presented by Michal Kolář,
1 Returns in commodities futures markets and financial speculation: a multivariate GARCH approach Joint with Matteo Manera and Ilaria Vignati Università.
B). Dependence between crude oil and other commodities © The Author(s) Published by Science and Education Publishing. Zayneb Attaf et al. Dependence.
Does Islamic Equity Investment Offer Hedging Benefits
What Drives Firm-Level Stock Returns?
Unconditional and conditional exchange rate exposure.
Sven Blank (University of Tübingen)
Presentation transcript:

Volatility Spillovers and Financial Contagion in the CEE Stock Markets MSc. Student: ânaru Mihai Supervisor: Professor PhD. Moisă Altăr Academy of Economic Studies Doctoral School of Finance and Banking

Summary Introduction Methodology Data description Estimation results Conclusions References

Introduction The spread of crises throughout the financial system at the global or regional level has been (loosely) defined as contagion. Despite the large interest in the subject, there is no generally accepted definition for contagion. The implications of contagion in the pricing of risk and for financial regulators are of outmost importance. The methodologies employed in the scientific literature vary with the definitions for contagion:  Spillovers in return and volatility across financial markets – modeled with simple GARCH models in Engle et al. (1988), Hamao et al. (1990), or multivariate GARCH models as in Beirne et al. (2008).  Restrictive definition – change in the cross-market shock transmission mechanism that takes place during crises – study of cross-market correlation coefficients: King and Wadhwani (1990), Forbes and Rigobon (2002), Dungey et al. (2005).

Introduction In the light of Bekaert, Harvey and Ng (2005), this study adopts the restrictive definition of contagion as “correlation over and above what one could expect from economic fundamentals”. Motivations of this study:  To develop a model that correctly accounts for the cross-market fundamental linkages, and therefore, gives an accurate description of the cross-market volatility transmission mechanism.  To verify to what extent does the model choice influence contagion test results. I construct a two-factor spillover model for the CEE stock markets, with global (US) and regional (European) risk loadings:  It distinguishes between regional and global market integration.  It outperforms the one-factor model in modeling cross-market correlations – Bekaert et al. (2008).

Methodology 1. The Bivariate Global – Regional Specification The framework for the joint process of US and EU returns:  with - return vector  - expected mean: lagged information variables, US and EU returns.  - vector of unexpected returns.  - joint conditional variance-covariance process specified by Engle and Kroner’s bivariate BEKK(1,1). The orthogonalization process to obtain the US and EU idiosyncratic shocks:, with,

Methodology 2. The Univariate Volatility Spillover Model General model for the return of CEE stock market index i, at time t: , with  - conditional mean: (lagged) US return or local dividend yield.  - unexpected return composed of global, regional and local idiosyncratic shocks. The restricted models for the global/regional risk factor exposure or ‘beta’:  Constant ‘beta’ :  Structural ‘beta’ :, with - a trade integration measure as in Bekaert et al. (2005).  Regime-switching ‘beta’:, with - a latent regime variable as in Baele (2005).

Methodology 2. The Univariate Volatility Spillover Model This study employs the flexible ‘beta’ specification as in Baele et al. (2010): where:  - structural economic instrument that reflects time-varying integration measure.  - regime-switching component that reflects temporary fluctuations in financial markets conditions. The latent regime variable follows a Markov chain process with constant transition probabilities: and.

Methodology 2. The Univariate Volatility Spillover Model When the spillover model for the individual market i: entertains regime-switching component in the market ‘betas’, then:  Case 1: and  Case 2: - GARCH(1,1) variance process. The estimation of the regime-switching specification is done through the maximization of the sample log-likelihood function:

Methodology 3. Variance Ratios and Conditional Correlations The depicted models are complete with the assumption: of zero correlation between the local idiosyncratic shocks and US/EU specific innovations. The total conditional variance of market i can be decomposed: Variance ratios and conditional correlations are given by:

Methodology 4. The Contagion Test An unconditional correlation (over the full sample) does not guarantee that there has not been contagion across some episodes of time. The following specification is estimated to test for any remaining correlation, separately for each market and through a panel regression: where: represents a dummy to account for crisis (high volatility) periods in the global/regional equity markets. Significant, parameters signal contagion.

Data description All data spans between Jan 2005 – Mar 2010, 262 weekly (Tue) observations. Equity market data: returns of the S&P500 for the global market, MSCI Europe for the regional market and of the most liquid stock market indices in Romania (BET), Hungary (BUX), Poland (WIG) and Czech Republic (PX) for the CEE markets. Information variables : CDS prices for CEE 5Y sovereign debt and EUR/CEE currencies exchange rates; (first difference of) US default spread, TED spread, US 10Y Treasury Bond yield, local dividend yields. Structural data : the sum of imports and exports between an individual country and US/EU divided by the sum of the total imports and exports for that country. The crisis dummy equals 1 during periods:  the peak of the recent global economic and financial crisis between Sep 2008 and the beginning of May 2009, when VIX volatility index was more than 1 std. dev. above the sample mean;  when both the S&P and MSCI returns were 1 std. dev. below the sample mean.

Estimation Results 1.The US and EU joint specification The BEKK(1,1) model results: There are significant unidirectional news and volatility spillovers from the US market to the aggregate European equity market. Specification tests: The Ljung-Box tests find that no autocorrelation remains in the (squared) standardized residuals of BEKK(1,1) model.

Estimation Results 2. The Dynamic Factor Regime-Switching Models The orthogonalized US and European residuals are plugged as components in the unexpected returns of the individual CEE indices. The various specifications of market ‘betas’ are tested for statistical significance:  For all CEE indices, the model with constant ‘betas’ and the model with time- varying structural ‘betas’ are statistically valid.  When the most flexible ‘beta’ specification as proposed by Baele and Inghelbrecht (2010) does not fit the data, less-complex specifications are employed, at least one factor loading involving a regime-switching component. The specification tests on the models with regime-switching are Ljung-Box tests on the generalized (regime-independent) residuals as in Smith (2007). The Hansen (1992, 1996) standardized LR test is employed for the general validity of the switching hypothesis.

EU market ‘beta’: US market ‘beta’: Estimation Results 2. The Dynamic Factor Regime-Switching Models Romania BET index Specification tests

EU market ‘beta’: US market ‘beta’: Estimation Results 2. The Dynamic Factor Regime-Switching Models Poland WIG index Specification tests

Estimation Results 2. The Dynamic Factor Regime-Switching Models EU market ‘beta’: US market ‘beta’: Czech Republic PX index Specification tests

Estimation Results 2. The Dynamic Factor Regime-Switching Models EU market ‘beta’: US market ‘beta’: Specification tests Hungary BUX index

Estimation Results 2. The Dynamic Factor Regime-Switching Models Graphs of smoothed probabilities of being in the low volatility regime

Estimation Results 2. The Dynamic Factor Regime-Switching Models The models involving regime-switching are the best-fitted by the measure of Hansen’s test – the null of one state is rejected at 90% confidence level for all the CEE indices. The generalized residual-based tests find no evidence of linear dependence or ARCH type effects for residuals from RS models. The switching component pertains only to the US spillover effects for all the CEE markets. Poland and Czech equity markets are more integrated at the regional level, while US shock spillovers are prevalent for the Romanian and Hungarian equity markets. The high local volatility states coincide with the peak of the recent global financial crisis in

Estimation Results 3. Economic determinants of switching between states The logit regressions for switching states  Dependent variable in the regressions is a binary dummy: equals 1 if smoothed probability of high volatility regime is greater than 50%, 0 otherwise.  The CDS price entertains a positive effect for switching from low to high local volatility state for all markets.  EUR/RON conditional volatility positively influences switching to a high volatility state for the BET index returns.  Higher US default spread and TED spread turn CEE equity markets turbulent.

Estimation Results 4. Variance ratios and Conditional Correlations Average variance ratios and conditional correlations from best-fitted models Over full sample, US volatility spillovers explain cross-sectional approx. 25% of the variance of CEE indices returns; the average EU variance ratio is 5%. During crisis periods, volatility spillovers from US market account for about 30% cross-sectional average for the CEE markets volatility, while EU spillover effects only increase to 6% on average. The increase of conditional correlations during crisis periods is not evidence for contagion, but an effect of the natural interdependence between markets.

Estimation Results 5. Contagion Tests – individual markets Romania Poland

Estimation Results 5. Contagion Tests – individual markets Czech Republic Hungary

Estimation Results 5. Contagion Tests – CEE markets group The panel tests of contagion  There is no evidence for contagion to the Romanian and Polish equity markets, regardless of the cross-market linkages model employed.  Contagion from the global or regional level is identified during crisis periods to the Czech and Hungarian equity markets, except for the RS model.  Testing on residuals from regime-switching models gives the same conclusion of no contagion at both individual market levels and to the CEE as a group.  The panel test of contagion indicates excess exposure to the US effects for the CEE equity markets when structural ‘beta’ model is employed.

Conclusions Shock-spillover from the global level are larger than those from the regional level to the group of CEE equity markets. The US market volatility is the dominating influence on CEE equity market variation. Higher risk of local CEE sovereign default, higher currency volatility and worsening financial conditions in the world economy (US) lead to higher CEE stock market volatility. Contagion tests results depend upon the model of volatility spillovers. I find no contagion when using the best-fitted models. The results of the study come in line with the findings in the literature on contagion which employs similar methodologies.

References Baele, L. (2005), “Volatility Spillover Effects in European Equity markets”, Journal of Quantitative Analysis, 40, 373 – 401 Baele, L. and K. Inghelbrecht (2010), “Time-varying integration, interdependence and contagion”, Journal of International Money and Finance, 1–28 Beirne, J., G. M. Caporale, M. Schulze-Ghattas, and N. Spagnolo (2008), “Volatility Spillovers and Contagion from Mature to Emerging Stock Markets”, IMF WP/08/286 Bekaert, G. and C. Harvey (1997), “Emerging equity market volatility”, Journal of Financial Economics, 43, 29 – 77 Bekaert, G., C. Harvey, and A. Ng (2005), “Market Integration and Contagion”, Journal of Business, 78, 39 – 69 Bekaert, G., R. Hodrick, and X. Zhang (2008), “International stock return comovements”, ECB WP NO 931 Bohl, M. T. and D. Serwa (2005), “Financial contagion vulnerability and resistance: A comparison of European stock markets”, Economic Systems, 29, 344 – 362 Chen, N. and F. Zhang (1997), “Correlations, trades and stock returns of the Pacific-Basin markets”, Pacific-Basin Finance Journal, 5, 559 – 577

References Dornbusch, R., Y. C. Park, and S. Claessens (2000), “Contagion: Understanding How It Spreads”, The World Bank Research Observer, 15, 179 – 197 Dungey, M., R. Fry, B. Gonzalez-Hermosillo, and V. L. Martin (2005), “Empirical modelling of contagion: A review of methodologies”, Quantitative Finance, 5, 9 – 24 Engel, C. and J. Hamilton (1990), “Long Swings in the Dollar: Are They in the Data and Do Markets Know It?”, American Economic Review, 80, 689 – 713 Engle, R., T. Ito, and W. Lin (1988), “Meteor showers or heat waves? Heteroskedastic intra-daily volatility in the foreign exchange market”, NBER Working Paper No Engle, R. and K. Kroner (1995), “Multivariate Simultaneous Generalized ARCH”, Econometric Theory, 11, 122 – 150 Forbes, K. J. and R. Rigobon (2002), “No Contagion, Only Interdependence”, The Journal of Finance, 57, 2223 – 2261 Franses, P. H. and D. van Dijk (2003), “Nonlinear Time Series Models in Empirical Finance”, Cambridge University Press Hamao, Y., R. Masulis, and V. Ng (1990), “Correlations in Price Changes and Volatility across International Stock Markets”, The Review of Financial Studies, 3, 281 – 307

References Hamilton, J. D. (1990), “Analysis of Time Series Subject to Changes in Regime”, Journal of Econometrics, 45, Hamilton, J. D. (1994), “Time Series Analysis”, Princeton University Press, NJ Princeton Hamilton, J. D. (1996), “Specification testing in Markov-Switching time-series models”, Journal of Econometrics, 70, 127 – 157 Hansen, B. E. (1992), “The Likelihood Ratio Test under Nonstandard Conditions: Testing the Markov Switching Model of GNP”, Journal of Applied Econometrics, 7, S61 – S82 Hansen, B. E. (1996), “Erratum: The Likelihood Ratio Test under Nonstandard Conditions: Testing the Markov Switching Model of GNP”, Journal of Applied Econometrics, 11, 195 – 198 Karolyi, G. A. (1995), “A Multivariate GARCH Model of International Transmissions of Stock Returns and Volatility: The Case of the United States and Canada”, Journal of Business & Economic Statistics, 13, 11 – 25 King, M. A. and S. Wadhwani (1990), “Transmission of Volatility between Stock Markets”, The Review of Financial Studies, 3, 5 – 33

References Li, H. and E. Majerowska (2007), “Testing stock market linkages for Poland and Hungary: A multivariate GARCH approach”, Research in International Business and Finance Maheu, J.M., and T.H. McCurdy (2000), “Identifying Bull and Bear Markets in Stock Returns”, Journal of Business and Economic Statistics, 18, 100 – 112 Ng, A. (2000), “Volatility spillover effects from Japan and the US to the Pacific– Basin”, Journal of International Money and Finance, 19, 207 – 233 Pericoli, M. and M. Sbracia (2001), “A primer on financial contagion”, Banca d’Italia, Temi di discussione, 407/2001 Perlin, M. (2009), “MS_Regress - A Package for Markov Regime Switching Models in Matlab”, Available at: Smith, D. R. (2007), “Evaluating Specification Tests for Markov-Switching Time Series Models”, WP available at SSRN: