STANFORD InGaAs and GaInNAs(Sb) Advanced LIGO Photodiodes David B. Jackrel, Homan B. Yuen, Seth R. Bank, Mark A. Wistey, Xiaojun Yu, Junxian Fu, Zhilong.

Slides:



Advertisements
Similar presentations
High power (130 mW) 40 GHz 1.55 μm mode-locked DBR lasers with integrated optical amplifiers J. Akbar, L. Hou, M. Haji,, M. J. Strain, P. Stolarz, J. H.
Advertisements

Quantum Dot Infrared Photo-detector
Chapter 9. PN-junction diodes: Applications
Record Values of Electron Beam Polarization and Quantum Efficiency for Semiconductor Photocathodes Yu.A.Mamaev St. Petersburg State Polytechnic University.
Solomon Assefa, Nature, March 2010 Reinventing germanium avalanche photodetector for nanophotonic on- chip optical interconnects Jeong-Min Lee
2012 Transfer-to-Excellence Research Experiences for Undergraduates Program (TTE REU) Characterization of layered gallium telluride (GaTe) Omotayo O Olukoya.
Report for China Frontier Workshop (June 22nd 2006 Beijing) Wang Zhanguo Key Lab. of Semiconductor Materials Science, Institute of Semiconductors, Chinese.
EE 403 (or 503) Introduction to plasma Processing Fall 2011 Title of the project Your name.
EE 230: Optical Fiber Communication Lecture 11 From the movie Warriors of the Net Detectors.
Update on LLNL FI activities on the Titan Laser A.J.Mackinnon Feb 28, 2007 Fusion Science Center Meeting Chicago.
Nucleation of gold nanoparticles on graphene from Au 144 molecular precursors Andrei Venter 1, Mahdi Hesari 2, M. Shafiq Ahmed ­1, Reg Bauld 1, Mark S.
Novel approach for calibration breakdown voltage of large area SiPM
OPTICAL DETECTORS IN FIBER OPTIC RECEIVERS.
Optical properties and carrier dynamics of self-assembled GaN/AlGaN quantum dots Ashida lab. Nawaki Yohei Nanotechnology 17 (2006)
Nitride Materials and Devices Project
4/11/2006BAE Application of photodiodes A brief overview.
Solar Cells, Sluggish Capacitance, and a Puzzling Observation Tim Gfroerer Davidson College, Davidson, NC with Mark Wanlass National Renewable Energy Lab,
3/26/2003BAE of 10 Application of photodiodes A brief overview.
Page 1 Band Edge Electroluminescence from N + -Implanted Bulk ZnO Hung-Ta Wang 1, Fan Ren 1, Byoung S. Kang 1, Jau-Jiun Chen 1, Travis Anderson 1, Soohwan.
Optical Characterization of GaN-based Nanowires : From Nanometric Scale to Light Emitting Devices A-L. Bavencove*, E. Pougeoise, J. Garcia, P. Gilet, F.
RFAD LAB, YONSEI University 4 January 2010 / Vol. 18, No. 1 / OPTICS EXPRESS 96 Vertical p-i-n germanium photodetector with high external responsivity.
Waveguide High-Speed Circuits and Systems Laboratory B.M.Yu High-Speed Circuits and Systems Laboratory 1.
TIM GFROERER, Davidson College Davidson, NC USA
Daniel Wamwangi School of Physics
Workshop PHOTOTRANSISTORS Septembre 9, 2003, Budapest / Hungary C. Gonzalez 1 Workshop « Phototransistors » September 9, 2003 Budapest Hungary InP-based.
OSC’s Industrial Affiliates Workshop, Tucson, Arizona March, 2005 GaAsSb QUANTUM WELLS FOR OPTOELECTRONICS AND INTEGRATED OPTICS Alan R. Kost, Xiaolan.
AlGaN/InGaN Photocathodes D.J. Leopold and J.H. Buckley Washington University St. Louis, Missouri, U.S.A. Large Area Picosecond Photodetector Development.
Nanowires and Nanorings at the Atomic Level Midori Kawamura, Neelima Paul, Vasily Cherepanov, and Bert Voigtländer Institut für Schichten und Grenzflächen.
10/26/20151 Observational Astrophysics I Astronomical detectors Kitchin pp
Advanced Virgo Optical Configuration ILIAS-GW, Tübingen Andreas Freise - Conceptual Design -
Ultrafast carrier dynamics Optical Pump - THz Probe Ultrafast carrier dynamics in Br + -bombarded semiconductors investigated by Optical Pump - THz Probe.
Stanford High Power Laser Lab Status of high power laser development for LIGO at Stanford Shally Saraf*, Supriyo Sinha, Arun Kumar Sridharan and Robert.
SUPERLATTICE PHOTOCATHODES: An Overview Tarun Desikan PPRC, Stanford University
Novel Semi-Transparent Optical Position Sensors for high-precision alignment monitoring applications Sandra Horvat, F.Bauer, V.Danielyan, H.Kroha Max-Planck-Institute.
1 Intensity Stabilization in Advanced LIGO David Ottaway (Jamie Rollins Viewgraphs) Massachusetts Institute of Technology March, 2004 LSC Livingston Meeting.
STANFORD Advanced LIGO Photodiode Development ______ David B. Jackrel, Homan B. Yuen, Seth R. Bank, Mark A. Wistey, Xiaojun Yu, Junxian Fu, Zhilong Rao,
1 US PFC Meeting, UCLA, August 3-6, 2010 DIONISOS: Upgrading to the high temperature regime G.M. Wright, K. Woller, R. Sullivan, H. Barnard, P. Stahle,
STANFORD High-Power High-Speed Photodiode for LIGO II David Jackrel Ph.D. Candidate- Dept. of Materials Science & Eng. Advisor- Dr. James S. Harris March.
SiNANO Workshop, Montreux, Sept 2006 New Generation of Virtual Substrates T. Grasby Dept. of Physics, University of Warwick.
Single photon counting detector for THz radioastronomy. D.Morozov 1,2, M.Tarkhov 1, P.Mauskopf 2, N.Kaurova 1, O.Minaeva 1, V.Seleznev 1, B.Voronov 1 and.
LSC March Meeting LIGO Hanford Observatory, March 22, 2006
STANFORD High-Power High-Speed Photodiode for LIGO II David Jackrel Ph.D. Candidate- Dept. of Materials Science & Engineering Advisor- Dr. James S. Harris.
STANFORD Advanced LIGO High-Power Photodiodes David Jackrel, PhD Candidate Dept. of Materials Science and Engineering Advisor: James S. Harris LSC Conference,
MRS, 2008 Fall Meeting Supported by DMR Grant Low-Frequency Noise and Lateral Transport Studies of In 0.35 Ga 0.65 As/GaAs Studies of In 0.35 Ga.
Defect-related trapping and recombination in metamorphic GaAs 0.72 P 0.28 grown on GaAs Tim Gfroerer, Peter Simov, and Brant West, Davidson College, Davidson,
High-Power High-Efficiency Photodiode for Advanced LIGO
Noise Characteristics of High-Performance InGaAs PIN Photodiodes Prepared by MOCVD Yung-Sheng Wang,Shoou-Jinn Chang,Yu-Zung Chiou,and Wei Lin Electrochemical.
Optical Coatings for Gravitational Wave Detection Gregory Harry Massachusetts Institute of Technology - On Behalf of the LIGO Science Collaboration - August.
The Proposed Holographic Noise Experiment Rainer Weiss, MIT On behalf of the proposing group Fermi Lab Proposal Review November 3, 2009.
Paolo Michelato, Workshop on High QE Photocathodes, INFN-Milano LASA, 4 – 6 October Photocathodes: Present status and future perspectives Paolo Michelato.
Topic Report Photodetector and CCD
1 Opto-Acoustic Imaging 台大電機系李百祺. 2 Conventional Ultrasonic Imaging Spatial resolution is mainly determined by frequency. Fabrication of high frequency.
1 Topic Report Photodetector and CCD Tuan-Shu Ho.
Yb:YAG Regenerative Amplifier for A1 Ground Laser Hut Rui Zhang ACCL Division V, RF-Gun Group Nov 20, 2015 SuperKEKB Injector Laser RF Gun Review.
Advanced LIGO Photodiodes ______
Development of GeSn Devices for Short Wave Infrared Optoelectronics
P. S. Friedman Integrated Sensors, LLC
The Proposed Holographic Noise Experiment
Yeong-Shin Park and Y. S. Hwang
Integrated Semiconductor Modelocked Lasers
MBE Growth of Graded Structures for Polarized Electron Emitters
Progress toward squeeze injection in Enhanced LIGO
Update on the Advanced LIGO PSL Program
Applications and Circuits
SCIENTIFIC CMOS PIXELS
Annealing effects on photoluminescence spectra of
Progress on the development of a low-cost fast-timing microchannel plate photodetector Junqi Xie1, Karen Byrum1, Marcel Demarteau1, Joseph Gregar1, Edward.
High Power, Uncooled InGaAs Photodiodes with High Quantum Efficiency for 1.2 to 2.2 Micron Wavelength Coherent Lidars Shubhashish Datta and Abhay Joshi.
Critical misfit in thin film epitaxy - Example Problems
SRF Cavity Etching Using an RF Ar/Cl2 Plasma
Presentation transcript:

STANFORD InGaAs and GaInNAs(Sb) Advanced LIGO Photodiodes David B. Jackrel, Homan B. Yuen, Seth R. Bank, Mark A. Wistey, Xiaojun Yu, Junxian Fu, Zhilong Rao, and James S. Harris, Jr. Solid State Research Lab, Stanford University LSC Meeting – LHO August 16 th, 2005 LIGO-G Z

STANFORD 2 / 18 Outline l Introduction l AdLIGO Photodiode Specifications l Device Materials l Device Design l GaIn(N)As(Sb) Materials & Device Results l Conclusion

STANFORD 3 / 18 Advanced LIGO Schematic Power Stabilization Auxiliary Length Sensing High-Speed Low Power  Commercial Device 180 W Low Noise I ph ~ 200 mA Commercial Device?

STANFORD 4 / 18 LIGO AS-Photodiode Specifications I-LIGOAdvanced LIGO Detector Bank of 6PDs DC - Readout RF – Readout Steady-State “Power” (mW) – 100  (same as DC) Operating Frequency 30 Mhz 100 kHz200 MHz Quantum Efficiency  80%  90%  (same as DC) Damage Threshold ( MW/cm 2 ) < 5< 50  (same as DC)

STANFORD 5 / 18 1 eV Materials: InGaAs & GaInNAs GaInNAs(Sb) 25% InGaAs 1064nm light  1.13eV º Ge

STANFORD 6 / 18 Metamorphic-InGaAs vs. GaInNAs Double Heterostructres 1m1m 2m2m I- GaInNAs(Sb) 8% In, 2% N, (4% Sb) I- In 0.25 Ga 0.75 As l GaInNAs(Sb) MBE growth with RF-Plasma source for N l Sb surfactant effects improve thin strained nitride films

STANFORD 7 / 18 Conventional PD Adv. LIGO Back-Illuminated PD l High Power l Linear Response l High Speed Back-Illuminated Photodiodes

STANFORD 8 / 18 Outline l Introduction l GaIn(N)As(Sb) Materials and Device Results l Materials Characterization Summary l Dark Current l Bandwidth l Quantum Efficiency l Saturation Power Level l Conclusion & Future Work

STANFORD 9 / 18 Materials Characterization Summary PL Intensity (A.U.) Relaxation (%) Absorption (%) TDD (cm -2 ) Trap Density (cm -3 ) MM- InGaAs %1e72.0e13 GaInNAs %~1e51.1e14 GaInNAs (w/ Deflection Plates) %~3e5- GaInNAsSb (w/ D.P.) %< 1e5- XRD-Reciprocal Space Map (224) Photoluminescence (PL) Spectra Absorption Spectra Deep-Level Transient Spectroscopy (DLTS) A B A B Spectral Cathodoluminescence (CL) Imaging to determine Threading Dislocation Density (TDD) IntensityPeak Energy

STANFORD 10 / 18 Dark Current Density: GaIn(N)As(Sb) Devices - J dk (A/cm 2 )

STANFORD 11 / 18 MM-InGaAs: 3dB Bandwidth  = 3 mm MM-InGaAs PD BW ~ 1/RC BW > 200 MHz  = 400  m P sat ~ 10 mW AdLIGO PD Specifications: 3-dB Bandwidth Sat. Power DC-Scheme : 100 kHz 30 – 100 mW RF-Scheme: 200 MHz AdLIGO RF-Readout Challenging for PDs!

STANFORD 12 / 18 InGaAs & GaInNAs PDs – IQE (w/ FCA & Incomplete Absorption) AdLIGO Requirement Int.

STANFORD 13 / 18 GaIn(N)As(Sb) PD QE GaInNAs GaInNAsSb* InGaAs (* scaled to account for FCA in thick substrates) Int.

STANFORD 14 / 18 Photodiode Saturation Power GaInNAs GaInNAsSb* InGaAs Bias V: 3 ~ 8 V (* scaled to account for FCA in thick substrates) LIGO GW-PD Requirement

STANFORD 15 / 18 Photodiode Results Summary Materials ParametersPhotodetectors Abs. (%) Relax. (%) TDD (cm -2 ) Trap Density (cm -3 ) IQE (%) J dk (  A/cm 2 ) MM- InGaAs 96%88.91e72.0e1375%~ 10 GaInNAs 60%4.3~1e51.1e1462%~ 0.1 GaInNAsSb 80%44.6< 1e5- 56% (scaled) ~ 1

STANFORD 16 / 18 Conclusion AdLIGO AS-PD Specification B-I PDs Developed at Stanford F-I PDs Commercial devices Saturation Power (mW) ~ ~ 200 Quantum Efficiency 90 % 75 % (  90 % w/ substrate removal) ~ 90 % Bandwidth (MHz) 100 kHz (  200 MHz RF-scheme) 4 1 ~ 10 Damage Threshold (MW / cm 2 ) < 5 (w/ 1  s shutter & 1 mm spot) Modeling ~ 3 (w/ 1 mm spot) Modeling ~ 0.4 (w/ 1 mm spot)

STANFORD 17 / 18 AdLIGO Photodiode Development: Future Work l Substrate removal l  90 % QE l High-Temperature Packaging l LLO or LHO Damage Threshold Tests? l Compatible with other experiments (GEO-600, MIT?) l Surface Uniformity & Noise Characterization l GEO-600 l Multi-Element Sensors? l Additional pointing information l Spatial mode information l Fabricate AdLIGO Photodiodes

STANFORD 18 / 18 Acknowledgements l National Science Foundation (NSF); this material is based on work supported by the NSF under grants and l Aaron Ptak, Manuel Romero and Wyatt Metzger at National Renewable Energy Labortatory (NREL) in Golden, CO l Gyles Webster at Accent Optical in San Jose, CA l Thank You

STANFORD Extra slides

STANFORD 20 / 18 Molecular Beam Epitaxy (MBE) l Effusion cells for In, Ga and Al l Cracking cell for As and Sb l RF-Plasma N cell Deflection Plates (DP) on Plasma Source  protect growth surface from ion damage + V - V substrate Nitrogen cell

STANFORD 21 / 18 Double-Heterostructure PIN Photodiodes N- and P- transparent  Absorption occurs in I-region where E-field is large n- i- p  m 2 eV InGaAs DH-PIN device simulated by ATLAS (Silvaco) light

STANFORD 22 / 18 Lattice-Mismatched Epitaxy misfit dislocation a film a substrate a film > a substrate h < h c h > h c h c  critical thickness

STANFORD 23 / 18 Materials Results Summary PL Intensity (A.U.) Relaxation (%) Absorption (%) TDD (cm -2 ) Trap Density (cm -3 ) MM- InGaAs %1e72.0e13 GaInNAs %~1e51.1e14 GaInNAs (DP) %~3e5- GaInNAsSb %< 1e5-