Experimental Characterization of Frequency Dependent Squeezed Light R. Schnabel, S. Chelkowski, H. Vahlbruch, B. Hage, A. Franzen, N. Lastzka, and K. Danzmann.

Slides:



Advertisements
Similar presentations
Beyond The Standard Quantum Limit B. W. Barr Institute for Gravitational Research University of Glasgow.
Advertisements

Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) HOMODYNE AND HETERODYNE READOUT OF A SIGNAL- RECYCLED GRAVITATIONAL WAVE DETECTOR.
Dual Recycling for GEO 600 Andreas Freise, Hartmut Grote Institut für Atom- und Molekülphysik Universität Hannover Max-Planck-Institut für Gravitationsphysik.
Albert-Einstein-Institute Hannover ET filter cavities for third generation detectors ET filter cavities for third generation detectors Keiko Kokeyama Andre.
Koji Arai – LIGO Laboratory / Caltech LIGO-G v2.
Next generation nonclassical light sources for gravitational wave detectors Stefan Ast, Christoph Baune, Jan Gniesmer, Axel Schönbeck, Christina Vollmer,
1 Experimental Demonstration of a Squeezing-Enhanced Laser-Interferometric Gravitational-Wave Detector Keisuke Goda Quantum Measurement Group, LIGO Massachusetts.
A quantum optical beam n Classically an optical beam can have well defined amplitude AND phase simultaneously. n Quantum mechanics however imposes an uncertainty.
Various ways to beat the Standard Quantum Limit Yanbei Chen California Institute of Technology.
Q09/2001 The GEO 600 Laser System LIGO-G Z V. Quetschke°, M. Kirchner°, I.Zawischa*, M. Brendel*, C. Fallnich*, S. Nagano +, B. Willke° +, K.
TeV Particle Astrophysics August 2006 Caltech Australian National University Universitat Hannover/AEI LIGO Scientific Collaboration MIT Corbitt, Goda,
Generation of squeezed states using radiation pressure effects David Ottaway – for Nergis Mavalvala Australia-Italy Workshop October 2005.
Ponderomotive Squeezing & Opto-mechanics Adam Libson and Thomas Corbitt GWADW 2015 G
Recent Developments toward Sub-Quantum-Noise-Limited Gravitational-wave Interferometers Nergis Mavalvala Aspen January 2005 LIGO-G R.
GWADW, May 2012, Hawaii D. Friedrich ICRR, The University of Tokyo K. Agatsuma, S. Sakata, T. Mori, S. Kawamura QRPN Experiment with Suspended 20mg Mirrors.
Stefan Hild 1ILIAS WG1 meeting, Cascina, November 2006 Comparison of tuned and detuned Signal-Recycling Stefan Hild for the GEO-team.
Quantum Noise Measurements at the ANU Sheon Chua, Michael Stefszky, Conor Mow-Lowry, Sheila Dwyer, Ben Buchler, Ping Koy Lam, Daniel Shaddock, and David.
GWADW 2010 in Kyoto, May 19, Development for Observation and Reduction of Radiation Pressure Noise T. Mori, S. Ballmer, K. Agatsuma, S. Sakata,
RF readout scheme to overcome the SQL Feb. 16 th, 2004 Aspen Meeting Kentaro Somiya LIGO-G Z.
White Light Cavity Ideas and General Sensitivity Limits Haixing Miao Summarizing researches by several LSC groups GWADW 2015, Alaska University of Birmingham.
The GEO 600 Detector Andreas Freise for the GEO 600 Team Max-Planck-Institute for Gravitational Physics University of Hannover May 20, 2002.
Interferometer Topologies and Prepared States of Light – Quantum Noise and Squeezing Convenor: Roman Schnabel.
Experiments towards beating quantum limits Stefan Goßler for the experimental team of The ANU Centre of Gravitational Physics.
Test mass dynamics with optical springs proposed experiments at Gingin Chunnong Zhao (University of Western Australia) Thanks to ACIGA members Stefan Danilishin.
A. Bunkowski Nano-structured Optics for GW Detectors 1 A.Bunkowski, O. Burmeister, D. Friedrich, K. Danzmann, and R. Schnabel in collaboration with T.
GEO‘s experience with Signal Recycling Harald Lück Perugia,
Generation and Control of Squeezed Light Fields R. Schnabel  S.  Chelkowski  A.  Franzen  B.  Hage  H.  Vahlbruch  N. Lastzka  M.  Mehmet.
Optomechanical Devices for Improving the Sensitivity of Gravitational Wave Detectors Chunnong Zhao for Australian International Gravitational wave Research.
SQL Related Experiments at the ANU Conor Mow-Lowry, G de Vine, K MacKenzie, B Sheard, Dr D Shaddock, Dr B Buchler, Dr M Gray, Dr PK Lam, Prof. David McClelland.
LSC 03/2005 LIGO-G Z S. Chelkowskicharacterization of squeezed states 1 Experimental characterization of frequency-dependent squeezed light Simon.
GEO600 Detector Status Harald Lück Max-Planck Institut für Gravitationsphysik Institut für Atom- und Molekülphysik, Uni Hannover.
Variable reflectivity signal-recycling mirror and control Stefan Goßler for the experimental team of The ANU Centre of Gravitational Physics.
Frequency Dependent Squeezing Roadmap toward 10dB
AIC: Activity report K.A. Strain MIT July 2007 G R.
Quantum noise observation and control A. HeidmannM. PinardJ.-M. Courty P.-F. CohadonT. Briant O. Arcizet T. CaniardJ. Le Bars Laboratoire Kastler Brossel,
RSE Experiment in Japan Feb. 20 th, 2004 Aspen Meeting LIGO-G Z K.Somiya, O.Miyakawa, P.Beyersdorf, and S.Kawamura.
S. ChelkowskiSlide 1WG1 Meeting, Birmingham 07/2008.
Abstract The Hannover Thermal Noise Experiment V. Leonhardt, L. Ribichini, H. Lück and K. Danzmann Max-Planck- Institut für Gravitationsphysik We measure.
Opto-mechanics with a 50 ng membrane Henning Kaufer, A. Sawadsky, R. Moghadas Nia, D.Friedrich, T. Westphal, K. Yamamoto and R. Schnabel GWADW 2012,
Dual Recycling in GEO 600 H. Grote, A. Freise, M. Malec for the GEO600 team Institut für Atom- und Molekülphysik University of Hannover Max-Planck-Institut.
Alexander Khalaidovski, Henning Vahlbruch, Hartmut Grote, Harald Lück, Benno Willke, Karsten Danzmann and Roman Schnabel STATUS OF THE GEO HF SQUEEZED.
SQL Related Experiments at the ANU Conor Mow-Lowry, G de Vine, K MacKenzie, B Sheard, Dr D Shaddock, Dr B Buchler, Dr M Gray, Dr PK Lam, Prof. David McClelland.
AIC, LSC / Virgo Collaboration Meeting, 2007, LLO Test-mass state preparation and entanglement in laser interferometers Helge Müller-Ebhardt, Henning Rehbein,
Stefan Hild 1GWADW, Elba, May 2006 Experience with Signal- Recycling in GEO 600 Stefan Hild, AEI Hannover for the GEO-team.
Low-loss Grating for Coupling to a High-Finesse Cavity R. Schnabel, A. Bunkowski, O. Burmeister, P. Beyersdorf, T. Clausnitzer*, E. B. Kley*, A. Tünnermann*,
QND, LSC / Virgo Collaboration Meeting, 2007, HannoverH. Müller-Ebhardt Entanglement between test masses Helge Müller-Ebhardt, Henning Rehbein, Kentaro.
Optomechanics Experiments
ET-ILIAS_GWA joint meeting, Nov Henning Rehbein Detuned signal-recycling interferometer unstableresonance worsesensitivity enhancedsensitivity.
Low-loss Grating for Coupling to a High-Finesse Cavity R. Schnabel, A. Bunkowski, O. Burmeister, P. Beyersdorf, T. Clausnitzer*, E. B. Kley*, A. Tünnermann*,
Detuned Twin-Signal-Recycling
Roman Schnabel for the AEI-Division Karsten Danzmann
Overview of quantum noise suppression techniques
The Quantum Limit and Beyond in Gravitational Wave Detectors
Interferometric speed meter as a low-frequency gravitational-wave detector Helge Müller-Ebhardt Max-Planck-Institut für Gravitationsphysik (AEI) and Leibniz.
Nergis Mavalvala Aspen January 2005
MIT Corbitt, Goda, Innerhofer, Mikhailov, Ottaway, Pelc, Wipf Caltech
Generation of squeezed states using radiation pressure effects
Quantum noise reduction techniques for the Einstein telescope
Quantum effects in Gravitational-wave Interferometers
Nergis Mavalvala Aspen February 2004
Ponderomotive Squeezing Quantum Measurement Group
Australia-Italy Workshop October 2005
Squeezed states in GW interferometers
Squeeze Amplitude Filters
Variable reflectivity signal-recycling mirror and control
A. Heidmann M. Pinard J.-M. Courty P.-F. Cohadon
Squeezed Light Techniques for Gravitational Wave Detection
La réduction du bruit quantique
Advanced Optical Sensing
Homodyne detection: understanding the laser noise amplitude transfer function Jérôme Degallaix Ilias meeting – June 2007.
Presentation transcript:

Experimental Characterization of Frequency Dependent Squeezed Light R. Schnabel, S. Chelkowski, H. Vahlbruch, B. Hage, A. Franzen, N. Lastzka, and K. Danzmann. LIGO-G Z Institut für Atom- und Molekülphysik, Universität Hannover Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut),

Roman Schnabel 2 Noise reduction by squeezed light, (- 6 dB in variance) Simple MI plus Squeezed Light Input Standard quantum limit (SQL) Quantum noise in phase quadrature

Roman Schnabel nm Mirror masses: m=5.6 kg Effective length: L=1200 m SR Power reflectivity: r=0.99 Detuning:  = rad 10 kW Faraday Rotator Frequency dependent squeezed states Signal-recycling mirror Power- Recycling mirror Laser Photo diode Optical Spring SR Interferometer

Roman Schnabel 4 Optical Spring SR Interferometers Quantum noise of GEO 600 (design values) in two given quadratures: SQL Phase Amplitude - 6 dB [J. Harms et al., PRD (2003)]

Roman Schnabel 5  Reflecting squeezed light at two subsequent filter cavities provide the desired frequency dependence in the generic case (for fixed angle homodyne detection). [Kimble et al., Phys. Rev. D 65, (2001)], [Harms et al., Phys. Rev. D 68, (2003)]. Frequency Dependent Squeezed Light Faraday rotator Photo diode SHG OPA Filter cavities SR mirror

Roman Schnabel 6 SQL Frequency Dependent Squeezing of Shot-noise Thermal noise (Internal) Amplitude q., GEO 600 (expected) Opto- mechanical resonance Optical resonance squeezed vacuum

Roman Schnabel 7 Phase squeezing Squeezing at 45° Phase squeezing Amplitude squeezing Phase squeezing Squeezing at 45° Squeezing at -45° Amplitude squeezing Phase squeezing Squeezing at 45° Frequency dependent squeezing Frequency Dependent Squeezing of Shot-noise

Roman Schnabel 8 Rotation of Quadrature Amplitudes Amplitude quadrature Phase quadrature   quadrature Angle rotated by 

Roman Schnabel 9 Generation of Frequency Dependent SQZ

Roman Schnabel 10 Squeezed Light Generation

Roman Schnabel 11 OPA layout MgO LiNO – hemilithic crystal 7.5mm x 5mm x 2.5 mm Radius of curvature: 10 mm HR=99.97% at 1064 nm Flat surface AR at 1064 nm and 532 nm Output coupler: R=94 % at 1064 nm Finesse ~ 100 Waist ~ 32  m FSR ~ 9 GHz  = 90 MHz A. Franzen Squeezed Light Generation

Roman Schnabel 12 Locked Amplitude Squeezed Spectrum Squeezed noise (-2 dB)

Roman Schnabel 13 Frequency Dependent Squeezing Spectrum

Roman Schnabel 14 Frequency Dependent Squeezing Spectrum

Roman Schnabel 15 Frequency Dependent Squeezing Spectrum

Roman Schnabel 16 Tomography - Quadrature Noise Histogram Mixer Voltage [mV] Time [s] counts / bin Projected Wigner function

Roman Schnabel 17 Tomography - Wigner Function Plots 14.1 MHz 12.0 MHz

Roman Schnabel 18 Tomography - Wigner Function Plots [Chelkowski et al., Phys. Rev. A 71, (2005)] MHz

Roman Schnabel 19 Cancellation of Frequency Dependence Rotation from positive detuning (+15.15MHz) Rotation from negative detuning MHz

Roman Schnabel 20 Summary Demonstration of frequency dependent squeezed light in a fully controlled (locked) setup Characterization using quantum state tomography (also locked) Cooperation of two identical cavities with opposite detunings (filter cavity plus signal recycling cavity) has been inferred leading to a broadband noise reduction. [Chelkowski et al., Phys. Rev. A 71, (2005)].