Selected topics on Cosmic Magnetic fields Huirong Yan KIAA-PKU

Slides:



Advertisements
Similar presentations
Methanol maser polarization in W3(OH) Lisa Harvey-Smith Collaborators: Vlemmings, Cohen, Soria-Ruiz Joint Institute for VLBI in Europe.
Advertisements

Tom Esposito Astr Feb 09. Seyfert 1, Seyfert 2, QSO, QSO2, LINER, FR I, FR II, Quasars, Blazars, NLXG, BALQ…
Raman Spectroscopy A) Introduction IR Raman
Chapter 19: Between the Stars: Gas and Dust in Space.
Low Energy measurements of Cosmic Rays suggested by the HE group 1 1Tracing the distribution of matter in order to understand HE data Measurements of NH.
ASTR112 The Galaxy Lecture 11 Prof. John Hearnshaw 13. The interstellar medium: dust 13.5 Interstellar polarization 14. Galactic cosmic rays 15. The galactic.
Electron Spin Resonance (ESR) Spectroscopy
CfA B.T. Draine: Dust in the submm1 Dust in the sub-mm or: what is  ? B. T. Draine Princeton University 2005 June 14.
INfluence of turbulence on extinction in various environments Huirong Yan KIAA-PKU Collaboration: H. Hirashita, A. Lazarian, T. Nazowa, T. Kazasa.
The Mass of the Galaxy We can use the orbital velocity to deduce the mass of the Galaxy (interior to our orbit): v orb 2 =GM/R. This comes out about 10.
Absorption and Emission Spectrum
Charge-Exchange Mechanism of X-ray Emission V. Kharchenko ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge 1. Introduction - interaction between.
Physics 777 Plasma Physics and Magnetohydrodynamics (MHD) Instructor: Gregory Fleishman Lecture 6. Transport of Radiation 14 October 2008.
A Herschel Galactic Plane Survey of [NII] Emission: Preliminary Results Paul F. Goldsmith Umut Yildiz William D. Langer Jorge L. Pineda Jet Propulsion.
Chapter 19 NMR Spectroscopy. Introduction... Nuclear Magnetic Resonance Spectrometry is based on the measurement of absorption of electromagnetic radiation.
University of Chicago 2007 July 30 SOFIA-POL 2007 The Infrared - Millimeter Polarization Spectrum John Vaillancourt California Institute of Technology.
A Critical Role for Viscosity in the Radio Mode AGN Feedback Cycle Paul Nulsen Harvard-Smithsonian Center for Astrophysics 2014 July 9X-ray View of Galaxy.
Atomic Absorption Spectroscopy
SALT RSS-NIR MID-TERM REVIEW MAY 20 & 21, 2009 INSTRUMENT SCIENCE - POLARIMETRY KENNETH NORDSIECK UNIVERSITY OF WISCONSIN.
Time out—states and transitions Spectroscopy—transitions between energy states of a molecule excited by absorption or emission of a photon h =  E = E.
Ch. 5 - Basic Definitions Specific intensity/mean intensity Flux
Vibrational and Rotational Spectroscopy
Spectral Line Physics Atomic Structure and Energy Levels Atomic Transition Rates Molecular Structure and Transitions 1.
A hot topic: the 21cm line I Benedetta Ciardi MPA.
Goal: To understand how stars form. Objectives: 1)To learn about the properties for the initial gas cloud for 1 star. 2)To understand the collapse and.
Nebular Astrophysics.
1 Common Far-Infrared Properties of the Galactic Disk and Nearby Galaxies MNRAS 379, 974 (2007) Hiroyuki Hirashita Hiroyuki Hirashita (Univ. Tsukuba, Japan)
Lecture 14 Star formation. Insterstellar dust and gas Dust and gas is mostly found in galaxy disks, and blocks optical light.
Interaction among cosmic Rays, waves and large scale turbulence Interaction among cosmic Rays, waves and large scale turbulence Huirong Yan Kavli Institute.
The Interstellar Medium and Interstellar Molecules Ronald Maddalena National Radio Astronomy Observatory.
MHD turbulence: Consequencies and Techniques to study Huirong Yan Supervisor: Alex Lazarian University of Wisconsin-Madison Predoctoral work in Stanford.
Note that the following lectures include animations and PowerPoint effects such as fly-ins and transitions that require you to be in PowerPoint's Slide.
Low Frequency Background and Cosmology Xuelei Chen National Astronomical Observatories Kashigar, September 10th 2005.
States and transitions
Diagnosing the Shock from Accretion onto a Young Star Nancy S. Brickhouse Harvard-Smithsonian Center for Astrophysics Collaborators: Steve Cranmer, Moritz.
Radio Astronomy Emission Mechanisms. NRAO/AUI/NSF3 Omega nebula.
New Developments in Maser Theory Vladimir Strelnitski Maria Mitchell Observatory “Radio Stars” Haystack Observatory 4 October, 2012.
July 8, 2008Polarized Fluorescence in RNe - AstroPol081 Atomic fluorescence and prospects for observing magnetic geometry using magnetic realignment of.
Spectropolarimetry of the starburst galaxy M82: Kinematics of dust outflow Michitoshi YOSHIDA 1),2), Koji S. KAWABATA 1), and Yoichi OHYAMA 3) 1) Hiroshima.
The Spectrum of EM Waves According to wavelength or frequency, the EM waves can be distinguished into various types. There is no sharp boundary.
Kashi1 Radio continuum observations of the Sombrero galaxy NGC4594 (M104) and other edge-on spirals Marita Krause MPIfR, Bonn Michael Dumke ESO,
The Interstellar Medium and Star Formation Material between the stars – gas and dust.
The core of what I am going to talk about is shown
H 3 + Toward and Within the Galactic Center Tom Geballe, Gemini Observatory With thanks to Takeshi Oka, Ben McCall, Miwa Goto, Tomonori Usuda.
ALMA Science Examples Min S. Yun (UMass/ANASAC). ALMA Science Requirements  High Fidelity Imaging  Precise Imaging at 0.1” Resolution  Routine Sub-mJy.
Fitting Magnetized Molecular Cloud Collapse Models to NGC 1333 IRAS 4A Pau Frau Josep Miquel Girart Daniele Galli Institut de Ciències de l’Espai (IEEC-CSIC)
Astrophysics from the Moon in the Radio Band Gianfranco Brunetti INAF - IRA, Bologna.
Förster Resonance Energy Transfer (FRET)
IR Astronomy In Search of Grain Alignment Pierre Bastien Megan Krejny Kathleen DeWahl Terry Jay Jones University of Minnesota.
The Gaseous Universe Section 3.4 of the text. Phases of Matter There are four: Solid - rare, in astronomy Liquid - rarest in astronomy: examples include.
ASTR112 The Galaxy Lecture 9 Prof. John Hearnshaw 12. The interstellar medium: gas 12.3 H I clouds (and IS absorption lines) 12.4 Dense molecular clouds.
Hale COLLAGE (CU ASTR-7500) “Topics in Solar Observation Techniques” Lecture 8: Coronal emission line formation Spring 2016, Part 1 of 3: Off-limb coronagraphy.
Cosmic Dust Enrichment and Dust Properties Investigated by ALMA Hiroyuki Hirashita ( 平下 博之 ) (ASIAA, Taiwan)
ISM & Astrochemistry Lecture 1. Interstellar Matter Comprises Gas and Dust Dust absorbs and scatters (extinguishes) starlight Top row – optical images.
Cosmic Masers Chris Phillips CSIRO / ATNF. What is a Maser? Microwave Amplification by Stimulated Emission of Radiation Microwave version of a LASER Occur.
High Energy Observational Astrophysics. 1 Processes that emit X-rays and Gamma rays.
A dynamic database of molecular model spectra
Scattered Radiation and Unified Model of Active Galactic Nuclei
The Interstellar Medium (ISM)
Do we need theory? Users: Star Formation Circumstellar studies
The Interstellar Medium and Star Formation
Ay126: Fine Structure Line Emission from the Galaxy
A Turbulent Local Environment
The Interstellar Medium and Star Formation
The University of Western Ontario
University of Minnesota
The ISM and Stellar Birth
The Interstellar Medium
宇宙磁场的起源 郭宗宽 中山大学宇宙学研讨班
Chapter 19 NMR Spectroscopy.
Presentation transcript:

Selected topics on Cosmic Magnetic fields Huirong Yan KIAA-PKU

Astrophysical magnetic fields are ubiquitous Cluster of galaxies Accretion disk galaxyQSO Solar wind Also in Molecular clouds, outflows, supernovae remnants, planetary nebulae…

There is no universal magnetic diagnostics in diffuse medium Zeeman splitting (B || ):  Zeeman splitting (B || ): Dense and cold clouds, with molecules or even denser with masers Dense and cold clouds, with molecules or even denser with masers Faraday rotation (B || ):  Faraday rotation (B || ): Uncertainty with the electron density distribution along los Uncertainty with the electron density distribution along los Light polarization by dust (B  ):  Light polarization by dust (B  ): Star light polarization Grain IR emission Most common ways of magnetic field studies:

4 Zeeman Effect       - ( Δm l = -1 ) (Δml=0 )(Δml=0 )  + ( Δm l = +1 )

5 Zeeman Effect 5

6 Faraday Rotation

7 Magnetic realignment Goldreich - Kylafis effect (upper state) polarization in radio and FIR emission due to anisotropic optical depth applicable to molecular clouds Ground state realignment unique mechanism to induce polarization in absorption lines due to anisotropic radiation ranging from submilimeter, IR, optical to UV general diffuse medium 7

Toy model:s Atomic alignment is differential occupation of the sublevels of the ground (or metastable) state. Atomic species on the ground state can be aligned by anisotropic radiation radiation Classical Analogy −−−−  Thermal system Radiatively pumped system Induced  1 transition followed by isotropic emission.

anisotropic radiation (unpolarized light is sufficient) there are at least 3 sublevels on the ground state. Alignment by unpolarized light requires >2 sublevels Incoming lighttransmitted light medium History: Laboratory studies on masers (experimental) (Brossel et al. 1952; Hawkins 1955; Kastler 1957) Suggested by Varshalovich (1971) for B studies in diffuse medium

Magnetic field induces precession and realigns atoms M=2 M=1 M=0 M=-1 M=-2 z BJ(F) rrrr Long lived ground state means sensitivity to weak B. Alignment is either parallel or perpendicular to B due to fast magnetic precession.B

Magnetic field induces precession and realigns atoms M=2 M=1 M=0 M=-1 M=-2 z BJ(F) rrrr Long lived ground state means sensitivity to weak B. Alignment is either parallel or perpendicular to B due to fast magnetic precession.B

Atomic realignment is sensitive to weak magnetic fields  L –Larmor frequency A-Einstein coefficient, ν ΔJ – E ΔJ /h  L (s -1 ) Δ v(cm/s) ΒGΒGΒGΒG   Hanleeffect LowerlevelHanleeffect Level interferences occur Atomicrealignment Zeeman effect  ΔJΔJΔJΔJ     Α             R-1R-1R-1R-1 For a wide range of field (>~ G, ~ ~ G, ~<1G) in diffuse medium, atomic alignment happens.            

Realignment depends on the angle between the B and light Alignment is determined by  r. The polarization degree depends on  and  r. For the degenerate case,  r and  coincide. r r

How to observe it? - I. Absorption           ∆  (   )

Polarization of absorption is either || or  to the magnetic field Polarization changes direction at Van Vleck angle  r =  54.7 o,  180 o o. Yan & Lazarian (2006)

16 How to observe it? - II. Emission           )    

Our results: many observed absorption lines have appreciable polarization IonC IC IISi ISi IIO IS I Wavl (A) P max 18%15%20%7%29%22% IonS IITi IICr ICr IINIS III Wavl (A) P max 12%7%5%21%5.5%24.5% Calculated Examples: Fe I, Fe II, Fe III, Fe III, Mn II, Ti III, C lI, N II, Cr I … Many more lines:

18 Magnetic field changes optical depth and line intensity!   One has to take into account the effect of magnetic field when analyzing spectrum.

Effect of nuclear spin 2. Reduce alignment for atoms with fine structures.  Enables alignment for Alkalii atoms. Similar structure   rrrr rrrr polarization of NI absorption Yan & Lazarian (2007) polarization of SII absorption NI and SII have same electron configurations (4S 3/2 4P 3/2,3/2  1 ). The difference in their polarizations shows the effect of hyperfine structure.

20 Is there any circular polarization? 20

Our results: polarization of resonant lines scattered from aligned atoms ionHI (Bal) Na IK IN VO IP VS IIAl IITi II Wavl P max 25%21%20%22%2.3%27%31%20%7.3% Many more lines: N I, N II, N III, P III, Al I, Al III, Fe I, Fe II, Fe III, Fe III, Mn II, Ti III, C lI, N II, Cr I … Calculated Examples:

Using several lines, it’s possible to get 3D B 3D information: from degree of polarization P (  2 0 (  r ),  ). P (  2 0 (  r ),  ). Two lines are enough P/  ΟΙ  rrrr   ΟΙ  SII % Optical depth  2 0 (  r ) ---Normalized density matrix coefficient from atomic physics

23 3rd possibilty: Forbidden (submm, IR) transitions within the aligned ground state Schematics of UV pumping of OI 63.2  m emission 3S  m 3P 0 3P 1 3P A 1302A 1304A (WF Effect) Schematics of UV pumping of OI 63.2  m emission 3S  m 3P 0 3P 1 3P A 1302A 1304A (WF Effect) Schematics of UV pumping of OI 63.2  m emission 3S  m 3P 0 3P 1 3P A 1302A 1304A (WF Effect) Schematics of UVpumping of CI 610  m emission   3P o 610  m 3P 1 3P 0 3P 2 3P 2 [CI] Emission  

Forbidden (submm, IR) transitions within the aligned ground state are polarized Calculated Examples: Many more lines:

Ex. I: alignment allows studies of magnetic field in a comet wake Resonance scattering of solar light by sodium tail from comet. MHD simulations of comet’s wake. P: -8%~14% for Na D2 Time variation of turbulent magnetic field can be studied.

Ex. II: Alignment allows tracing heliosphere B with comet Satellite based model of Heliospheric B ( Opher et al ) Earth Comet orbit Cost effective way of study of B in heliosphere! Sun synthetic measurements of comet B ∗

Ex. III: Polarization from circumstellar envelope O I ( ) emission Polarization vectors are spherically symmetric without magnetic realignment and the classical expression applies Spherical symmetry is broken With alignment

Β LOS z  x Polarization from Toroidal Disk

Ex. V: Atomic alignment influences the FIR line intensity ouudistortion to CMB This influences Distortion of CMB and our estimates for early universe metalicity. ΔT/T cmb  Schematics of UV pumping of OI 63.2  m emission 3S  m 3P 0 3P 1 3P A 1302A 1304A

Ex. VI: alignment allows study of magnetic field in the epoch of Reionization OI 63.2  m transmission  UV excitation rate/ CMB excitation rate (Yan & Lazarian 2008) From Cantalupo et al. (2008) Schematics of reionization 63.2  m 3S 1 3P 0 3P 1 3P A 1302A 1304A Schematics of UV pumping of OI 63.2  m emission

CSO Steward Observatory Sounding rocket flight is funded.(PI Nordsieck) Observations for IBEX. (w. Paul Smith) Studies of [C I] polarization are intended.(w.Houde) Ongoing projects open wide avenues for the technique VLT  VLT  VLT  Observations for SNRs. (w. F. Snick)

32 Grain alignment Renewed interest to grain alignment also arise from CMB polarization studies

33 Paramagnetic alignment and its modifications fail observational testing Grains get aligned with rotation axis parallel to B (grain 1) 33 B Davis-Greenstein mechanism 1 2 This is textbook solution

Rao et al. 98         

                    

      “  ”            “  ”  Draine & Weingrartner 97 L. Spitzer: Alignment torques are not universal. How can a universal alignment exist? Angle between B and light direction

   

a1a1 k e2e2 e3e3 e1e1 Θ  Lazarian & Hoang 07         a 1 is grain max inertia axis k is light direction               

 Lazarian & Hoang 07                    

J//a 1 B               ’        

is angle between magnetic field and radiation is angle between a and magnetic field k B a  No wobbling: “wrong alignment” “wrong” alignment for a narrow range of angles  “  ”  Suppression of “wrong alignment” by wobbling   

               

RATs increase with a eff         

       

RAT alignment explains the existing data. RAT testing constrains grain composition. RAT alignment is present beyond ISM    B Davis-Greenstein mechanism 1 2 

Atomic alignment is sensitive to smaller scale fluctuations of magnetic field. Combining the information from both, we can get 3D information of magnetic field. Provide independent test to grain alignment theory. Comparison of atomic and grain alignment:

47 Get magnetic strength from Chandrasekar-Fermi (CF) method Assuming equipartition between kinetic energy and perturbed magnetic energy 47   

48 How good is the assumption of equipartition? sub-Alfvenic turbulence super-Alfvenic turbulence, turbulence dynamo 48

49 Summary of interstellar medium polarimetry Magnetic field in ubiquitous in astrophysics and need to be diagnosed from multiple scales with the synergy of various polarimetry techniques. Ground state alignment is a unique mechanism to induce polarization in absorption lines and detect ISM magnetic field. It also influence emission polarimetry and forbidden line polarimetry Multiple wavebands from submillimeter, IR, optical to UV can be used to detect 3D small scale magnetic field. Combined with grain alignment, CF techniques, it can be used to study both spatial and temporal variations of magnetic field. 49