© Anselm Spoerri Lecture 4 Information Visualization –Origins –Data Types, Display Variables and Ranking of Visual Properties –Mappings + Timings –Key.

Slides:



Advertisements
Similar presentations
H3: Laying Out Large Directed Graphs in 3D Hyperbolic Space Tamara Munzner, Stanford University.
Advertisements

Jun 2, 2014 IAT Trees2 Chapter 3.2 of Spence ______________________________________________________________________________________ SCHOOL OF INTERACTIVE.
Visualisasi Informasi
© Anselm Spoerri Lecture 4 Human Visual System –Recap –3D vs 2D Debate –Object Recognition Theories Tufte – Envisioning Information.
Information Visualization (Shneiderman and Plaisant, Ch. 13)
© Anselm Spoerri Lecture 9 TheBrain & Visual Thesaurus Demos Focus+Context –Nonlinear Magnification –TableLens Visual Tools for Text Retrieval Part 1.
Abstract Syntax Tree Rendering Noah Brickman CMPS 203.
© Anselm Spoerri Lecture 8 Topic Assignment Information Visualization – Origins Information Visualizer Visualization of Hierarchical Data.
Tree-Maps: A Space-Filling Approach to the Visualization of Hierarchical Information Structures Brian Johnson Ben Shneiderman (HCIL TR 91-06) Steve Betten.
© Anselm Spoerri Lecture 6 Housekeeping –Final Project: Proposals due two weeks Human Computer Interaction – Recap –Heuristic Evaluation Assignment  Due.
Cone Trees and Collapsible Cylindrical Trees
Name: Handin: Mon April 14 (start of class) Perceptual Coding and Interaction – Treemap
cs5764: Information Visualization Chris North
The Table Lens: Merging Graphical and Symbolic Representations in an Interactive Focus + Context Visualization for Tabular Information R. Rao and S. K.
Matthias Mayer The Table Lens - Ramana Rao & Stuart K. Card Information Visualization 838b - February 21st 2001 The Table Lens: Merging.
© Anselm Spoerri Information Visualization Information Visualization Course Prof. Anselm Spoerri
Human Visual System Lecture 3 Human Visual System – Recap
© Anselm Spoerri Lecture 14 – Course Review Human Visual Perception How it relates to creating effective information visualizations Understand Key Design.
© Anselm Spoerri Lecture 2 Information Visualization Intro – Recap Foundation in Human Visual Perception –Sensory vs. Cultural –Attention – Searchlight.
© Anselm Spoerri Information Visualization Information Visualization Course Prof. Anselm Spoerri
Info Vis: Multi-Dimensional Data Chris North cs3724: HCI.
Tree Structures (Hierarchical Information) cs5764: Information Visualization Chris North.
Oct 7, 2013 IAT Trees2 Chapter 3.2 of Spence ______________________________________________________________________________________ SCHOOL OF INTERACTIVE.
Information Design and Visualization
Dynamic Queries –presented by Bhaskar Chatterjee Visual Alternative to SQL for Querying databases Depending on data types and the values decides the input.
1 Adapting the TileBar Interface for Visualizing Resource Usage Session 602 Adapting the TileBar Interface for Visualizing Resource Usage Session 602 Larry.
© 2010 Pearson Addison-Wesley. All rights reserved. Addison Wesley is an imprint of Designing the User Interface: Strategies for Effective Human-Computer.
© 2010 Pearson Addison-Wesley. All rights reserved. Addison Wesley is an imprint of Designing the User Interface: Strategies for Effective Human-Computer.
A Focus+Context Technique Based on Hyperbolic Geometry for Visualizing Large Hierarchies. John Lamping, Ramana Rao, and Peter Pirolli Xerox Palo Alto Research.
Information Visualization Using 3D Interactive Animation Meng Tang 05/17/2001 George G. Robertson, Stuart K. Card, and Jock D. Mackinlay.
Space/Order Quanzhen Geng (Master of Software Systems Program) January 27, 2003 CS-533C Reading Presentation.
Fall 2002CS/PSY Information Visualization Picture worth 1000 words... Agenda Information Visualization overview  Definition  Principles  Examples.
Information Visualization –III Treemaps and Fisheye Views.
IAT 814 Trees Chapter 3.2 of Spence ______________________________________________________________________________________ SCHOOL OF INTERACTIVE ARTS +
Interacting with Huge Hierarchies: Beyond Cone Trees Jeromy Carriere, Rick Kazman Computer Graphics Lab, Department of Computer Science University of Waterloo,
Robert Kosara, Helwig Hauser 1InfoVis STAR The State of the Art in Information Visualization Robert Kosara, Helwig Hauser.
Interactive Information Visualization of a Million Items
1 User Interfaces at Microsoft Research Intelligent Information Access using Animated 2 and 3D Information Visualization Mary Czerwinski.
Copyright © 2005, Pearson Education, Inc. Slides from resources for: Designing the User Interface 4th Edition by Ben Shneiderman & Catherine Plaisant Slides.
The Table Lens: Merging Graphical and Symbolic Representations in an Interactive Focus+Context Visualization for Tabular Information Ramana Rao and Stuart.
Fall 2002CS/PSY Information Visualization 2 Case Study: Portraying Hierarchies Visualizing hierarchies  Variety of techniques Traditional tree views,
Mao Lin Huang University of Technology, Sydney, Visual Representations of Data and Knowledge.
Nov 26, 2009 IAT Visualizing Trees ______________________________________________________________________________________ SCHOOL OF INTERACTIVE ARTS.
Info Vis: Multi-Dimensional Data Chris North cs3724: HCI.
Innovative UI Ideas Marti Hearst SIMS 213, UI Design & Development April 20, 1999.
C. Ahlberg & B. Shneiderman (1994)
14. Information Search and Visualization
Tight Coupling of Dynamic Query Filters with Starfield Displays / Spotfire.net Desktop By Chris Ahlberg and Ben Shneiderman / Spotfire Inc. IC280 5/9/02.
1D & 2D Spaces for Representing Data Mao Lin Huang.
Information Models An “information space” that users navigate –Information integration, a key aspect of mental model Want a structure that is simple and.
INFORMATION VISUALIZATION
1 Visual Encoding Andrew Chan CPSC 533C January 20, 2003.
Comp 15 - Usability & Human Factors Unit 12b - Information Visualization This material was developed by Columbia University, funded by the Department of.
Visualization Design Principles cs5984: Information Visualization Chris North.
DATA VISUALIZATION BOB MARSHALL, MD MPH MISM FAAFP FACULTY, DOD CLINICAL INFORMATICS FELLOWSHIP.
Information Visualization Course
Lecture 14 – Course Review
IAT 355 Trees2 ______________________________________________________________________________________.
Hierarchies (Trees) Definition Examples
Usability & Human Factors
Professor John Canny Fall 2001 Nov 29, 2001
Professor John Canny Spring 2003
Visual Variables for Information Visualization
CSc4730/6730 Scientific Visualization
Information Design and Visualization
cs5984: Information Visualization Chris North
Information Visualization 2 Case Study: Portraying Hierarchies
Information Visualization (Part 1)
CHAPTER 7: Information Visualization
CHAPTER 14: Information Visualization
Presentation transcript:

© Anselm Spoerri Lecture 4 Information Visualization –Origins –Data Types, Display Variables and Ranking of Visual Properties –Mappings + Timings –Key Design Principles –InfoVis Toolbox –Design + Interaction Illustration of Key Design Principles –Using Classic InfoVis tools (see Video on Lectures page) Hierarchical Data Visualization Focus + Context Visualization

© Anselm Spoerri Information Visualization – Origins 1 Thought Leaders –Bertin, French cartographer, "The Semiology of Graphics (1967/1983) –Tufte (1983) emphasizes maximizing the density of useful information 2 Statistical Visualization –Tukey (1977) “Exploratory Data Analysis”: rapid statistical insight into data –Cleveland and McGilll (1988) "Dynamic Graphics for Statistics“ –Analysis of multi–dimensional, multi–variable data 3 Scientific Visualization –Satellites sending large quantities of data  how to better understand it? 4 Computer Graphics and Artificial Intelligence –Mackinlay (1986) formalized Bertin's design theory; added psychophysical data, and used to generate automatic design of data 5 User Interface and Human Computer Interaction –Card, Robertson & Mackinlay (1989) coined “Information Visualization” and used animation and distortion to interact with large data sets in a system called the “Information Visualizer”

© Anselm Spoerri Toward a InfoVis Toolbox – Problem Statement & Goal Information Visualization –Information does not have any obvious spatial mapping Fundamental Problem How to map non–spatial abstractions into effective visual form? Goal Use of computer-supported, interactive, visual representations of abstract data to amplify cognition

© Anselm Spoerri Data Types, Data Sets and Marks Data Types Numerical (can perform arithmetics) Ordinal (obeys ordering relations) Categorical (equal or not equal to other values) Marks –Points (position, color, size) –Lines (location, length, width, color) –Areas (uniform / smoothed shading) –Volumes (resolution, translucency) Abstract Data Sets − Symbolic − Tabular − Networked − Hierarchical − Textual information − …

© Anselm Spoerri Mapping Data to Display Variables –Position (2) –Orientation (1) –Size (spatial frequency) –Motion (2)++ –Blinking? –Color (3) Accuracy Ranking for Quantitative Perceptual Tasks Angle Slope Length Position Area Volume ColorDensity More Accurate Less Accurate

© Anselm Spoerri Ranking of Visual Properties for Different Data Types NUMERICAL Position Length Angle Slope Area Volume Density Color Saturation Color Hue ORDINAL Position Density Color Saturation Color Hue Texture Connection Containment Length Angle CATEGORICAL Position Color Hue Texture Connection Containment Density Color Saturation Shape Length

© Anselm Spoerri Interaction – Mappings + Timings Mapping Data to Visual Form 1.Variables Mapped to “Visual Display” 2.Variables Mapped to “Controls”  “Visual Display” and “Controls” Linked Interaction Responsiveness “0.1” second  Perception of Motion  Perception of Cause & Effect “1.0” second  “Unprepared response” “10” seconds  Pace of routine cognitive task

© Anselm Spoerri Information Visualization – Key Design Principles Direct Manipulation Immediate Feedback Linked Displays Dynamic Queries Tight Coupling Output  Input Overview  Zoom+Filter  Details-on-Demand Provide Context + Focus Animate Transitions Increase Information Density

© Anselm Spoerri Information Visualization – “Toolbox” Position Size Orientation Texture Shape Color Shading Depth Cues Surface Motion Stereo Proximity Similarity Continuity Connectedness Closure Containment Direct Manipulation Immediate Feedback Linked Displays Animate Shift of Focus Dynamic Sliders Semantic Zoom Focus+Context Details-on-Demand Output  Input Maximize Data-Ink Ratio Maximize Data Density Minimize Lie factor Perceptual Coding Interaction Information Density

© Anselm Spoerri Information Visualization – Design & Interaction

© Anselm Spoerri Information Visualization – Design & Interaction

© Anselm Spoerri Stacked Scatterplots – Brushing  Linked Displays

© Anselm Spoerri SeeSoft – Software Visualization  Linked Displays Line = single line of source code and its lengthColor = different properties

© Anselm Spoerri FilmFinder & Starfields Display  Dynamic Queries Two Most Important Variables Mapped to “Scatterplot” Other Variables Mapped to “Controls” “Visual Display” and “Controls” Linked

© Anselm Spoerri FilmFinder & Starfields Display Advantages of Dynamic Queries over traditional query language such as SQL  Make Query Formulation Easy = Interact with Sliders and Visual Objects (SQL = Structured Query Language is difficult to master)  Support Rapid, Incremental and Reversible Exploration  Shift Cognitive Load to Perceptual System  Selection by Pointing Tight Coupling of Interface Components  Immediate Visual Feedback  Linked Display and Controls  Avoid “Null set” by having current selection limit further query refinement  Progressive Query Refinement  Details on Demand

© Anselm Spoerri Starfields PositionYes Size Orientation Texture Shape ColorYes Shading Depth Cues Surface MotionYes Stereo ProximityYes SimilarityYes Continuity Connectedness Closure Containment Direct ManipulationYes Immediate FeedbackYes Linked DisplaysYes Logarithmic Shift of Focus Dynamic SlidersYes Semantic ZoomYes Focus+Context Details-on-DemandYes Output  InputYes Perceptual Coding Interaction

© Anselm Spoerri Perspective Wall  Focus + Context Fisheye Distortion to Increase Information Density

© Anselm Spoerri PerspectiveWall PositionYes SizeYes Orientation Texture ShapeYes ColorYes Shading Depth CuesYes Surface Yes MotionYes Stereo ProximityYes SimilarityYes Continuity Connectedness Closure Containment Yes Direct ManipulationYes Immediate FeedbackYes Linked Displays Logarithmic Shift of FocusYes Dynamic SlidersYes Semantic Zoom Focus+ContextYes Details-on-Demand Output  Input Perceptual Coding Interaction Data = Temporal / Linear

© Anselm Spoerri Hierarchical Information Pervasive –File / Directory systems on computers –Classifications / Taxonomies / Controlled Vocabularies –Software Menu structure –Organization charts –…–… Main Visualization Schemes –Indented Outlines –Good for Searching Bad for Structure –Node-Link Trees –Top-to-Bottom Layout –2D –3D : ConeTree –Radial Layout –2D : SunBurst, Hyperbolic Trees –3D : H3 & Walrus –Space-Filling Treemaps

© Anselm Spoerri Hierarchical Data – Traditional Node-Link Layout Allocate Space proportional to # of Children at Different Levels

© Anselm Spoerri Hierarchical Data – 3D ConeTree

© Anselm Spoerri Hierarchical Data – 3D ConeTree (cont.)

© Anselm Spoerri Hierarchy – Exponential Growth of Nodes Levels Base Width = B L - 1 Branching = 3

© Anselm Spoerri Hierarchical Data – 3D ConeTree (cont.) How to manage exponential growth of nodes?  Use 3D to “linearize” problem – width fixed  Use “Slow IN / OUT” animation of object or point of interest to create “Object Constancy” Time Location linear Slow IN / OUT

© Anselm Spoerri Treemaps  Space-Filling Design

© Anselm Spoerri Treemaps – “Slice & Dice”

© Anselm Spoerri Treemaps – Nested vs. Non-nested Non-nested Tree-Map Nested Tree-Map

© Anselm Spoerri Treemaps Which Problem do Treemaps aim to address?  Visualize hierarchical structure as well as content of (atom) nodes What are Treemaps’ main design goals?  Space–filling (High Data / Ink Ratio)  “Structure” is represented using Enclosure / Containment  “Content” is represented using Area Pre–attentive, Early Visual Processes Used?  Position, Size = Area, Color and Containment

© Anselm Spoerri Treemap PositionYes SizeYes Orientation Texture Yes Shape ColorYes Shading Depth Cues Surface MotionYes Stereo Proximity Yes Similarity Continuity Connectedness Closure ContainmentYes Direct ManipulationYes Immediate FeedbackYes Linked DisplaysYes Logarithmic Shift of Focus Dynamic SlidersYes Semantic Zoom Yes Focus+Context Details-on-DemandYes Output  Input Perceptual Coding Interaction Non-nested Nested Data = Hierarchy

© Anselm Spoerri Treemaps – Other Layout Algorithms  Better Aspect Ratio Slice-and-dice Squarified

© Anselm Spoerri Treemaps – Other Layout Algorithms Hard to Improve Aspect Ratio and Preserve Ordering Slice-and-dice Ordered, very bad aspect ratios stable Squarified Unordered best aspect ratios medium stability

© Anselm Spoerri Treemaps – Shading

© Anselm Spoerri Treemaps – 1,000,000 items

© Anselm Spoerri Botanical Visualization of Huge Hierarchies Visualization Group - Technical University of Eindhoven

© Anselm Spoerri Botanical Visualization of Huge Hierarchies

© Anselm Spoerri Botanical Visualization of Huge Hierarchies

© Anselm Spoerri Hierarchical Data – Radial Space-Filling American Heritage Dictionary, 3rd Ed. Houghton Mifflin, 1992

© Anselm Spoerri Hierarchical Data – Radial Space-Filling  SunBurst

© Anselm Spoerri Hierarchical Information – Recap Treemap Traditional ConeTree SunTree Botanical

© Anselm Spoerri Focus+Context Interaction Nonlinear Magnification InfoCenter – Nonlinear Magnification = “Fisheye Views" = “Focus+Context" Preserve Overview enable Detail Analysis in same view

© Anselm Spoerri Fisheye Menus B. Bederson –HCI Lab, Uni. of Maryland Demo

© Anselm Spoerri Table Lens

© Anselm Spoerri Table Lens – Focus+Context hiddenfocal Non focal sorting spotlighting Control point

© Anselm Spoerri Table Lens (cont.) SHAPE –Pattern detection and comparison OUTLIERS –Detect extreme values –Sort to see MAX and MIN

© Anselm Spoerri Table Lens PositionYes SizeYes Orientation Texture Shape ColorYes Shading Depth Cues Surface MotionYes Stereo ProximityYes SimilarityYes ContinuityYes Connectedness Closure Containment Yes Direct ManipulationYes Immediate FeedbackYes Linked DisplaysYes Logarithmic Shift of Focus Dynamic Sliders Semantic ZoomYes Focus+ContextYes Details-on-Demand Output  Input Perceptual Coding Interaction Data = Multi– Variate

© Anselm Spoerri Hyperbolic Trees Visualize Hierarchical Data Focus + Context Technique Inxigth StarTree Browser Comparison Standard 2D Browser: 100 nodes (3 character text strings) Hyperbolic Browser: 1000 nodes (50 nearest to focus can show from 3 to dozens of characters)

© Anselm Spoerri Hyperbolic Trees PositionYes SizeYes Orientation Texture ShapeYes ColorYes Shading Depth Cues Surface MotionYes Stereo ProximityYes Similarity Continuity ConnectednessYes Closure Containment Direct ManipulationYes Immediate FeedbackYes Linked Displays Logarithmic Shift of FocusYes Dynamic Sliders Semantic ZoomYes Focus+ContextYes Details-on-DemandYes Output  Input Perceptual Coding Interaction Data = Hierarchy

© Anselm Spoerri Hyperbolic Tree  3D Munzner’s H3 / H3 Viewer Hyperbolic Browser Projection onto sphere rather than circle Handles graphs as well as trees ConeTree Distributes child nodes on surface of hemisphere rather than circle circumference

© Anselm Spoerri 3D Hyperbolic Browser  Walrus

© Anselm Spoerri Interaction Benefits Direct ManipulationReduce Short-term Memory Load Immediate Feedback Permit Easy Reversal of Actions Linked DisplaysIncrease Info Density Animated Shift of Focus Offload work from cognitive to perceptual system Object Constancy and Increase Info Density Dynamic SlidersReduce Errors Semantic Zoom  O(LOG(N)) Navigation Diameter Focus+Context  O(LOG(N)) Navigation Diameter Details-on-DemandReduce Clutter & Overload Output  InputReduce Errors