Shuichi Noguchi 、 KEK 6-th ILC School, November 20111 Superconducting Cavity  Design ( RF, Mechanical, Thermal )  Material  Fabrication Techniques 

Slides:



Advertisements
Similar presentations
Superconducting RF Cavities for Particle Accelerators: An Introduction Ilan Ben-Zvi Brookhaven National Laboratory.
Advertisements

Accelerator Science and Technology Centre Prospects of Compact Crab Cavities for LHC Peter McIntosh LHC-CC Workshop, CERN 21 st August 2008.
Juliette PLOUIN – CEA/SaclayCARE’08, 3 December /21 Superconducting Cavity activities within HIPPI CARE ‘08 CERN, 2-5 December 2008 Juliette PLOUIN.
MICE RF Cavity Design and Fabrication Update Steve Virostek Lawrence Berkeley National Laboratory MICE Collaboration Meeting October 27, 2004.
Status of the 201 MHz Cavity and Coupling Coil Module Steve Virostek Lawrence Berkeley National Laboratory MICE Video Conference March 10, 2004.
201 MHz NC RF Cavity R&D Derun Li Center for Beam Physics Lawrence Berkeley National Laboratory WG3 at NuFact 2004 July 28, 2004.
Thin Films for Superconducting Cavities HZB. Outline Introduction to Superconducting Cavities The Quadrupole Resonator Commissioning Outlook 2.
Shuichi Noguchi, KEK6-th ILC School, November Auxiliary Components  Input Power Coupler  HOM Dumping Coupler  Frequency Tuner  He Jacket  Magnetic.
Cavity design Fundamental parameters : frequency, beta, number of cells (gaps), Eacc Optimisation : R/Q, surface fields / Eacc, Qex, damping of HOMs, kloss,
Cavity package T.Saeki BCD meeting 20 Dec Cavity shape BCD: TESLA shape Pros: small wakefield, HOM thoroughly investigated single-cell: 43 MV/m.
SRF Results and Requirements Internal MLC Review Matthias Liepe1.
Rong-Li Geng Jefferson Lab High Efficiency High Gradient Cavities - Toward Cutting Down ILC Dynamic Heat Load by Factor of Four R.L. Geng, ALCW2015,
New HOM coupler design Demountable Damped Cavity (DDC) Sokendai, The graduated university for advanced studies. KEK, LL / Ichiro Cavity Group October 21,
201 MHz NC RF Cavity R&D for Muon Cooling Channels
Page 1 Jean Delayen HyeKyoung Park Center for Accelerator Science Department of Physics, Old Dominion University and Thomas Jefferson National Accelerator.
Elliptical SRF Cavities Mike Foley. Fermilab Feb 13-14, 2007DOE SCRF Review2 Elliptical SRF Cavities PREVIEW OF PRESENTATION –Brief review of established.
6/11/03R.L. Geng, NuFact MHz SCRF cavity development for RLA Rong-Li Geng LEPP, Cornell University.
Cavity status; recent KEK activities : Hayano (1) STF CM-1 cavities are; MHI-014: 3-rd VT:36MV/m (finished) MHI-015: 3-rd VT: > 18.4MV/m.
Summary of AWG7 SCRF technologies Eiji Kako Wolf-Dietrich Moeller Akira Yamamoto Hitoshi Hayano Tokyo, Nov
Status of crab crossing studies Presented by NAKANISHI Kota (KEK) 2008/1/25.
Mechanical Issues SPL cavities/cryomodules Workshop CERN 30 Sep. 2009
The design of elliptical cavities Gabriele Costanza.
Shuichi Noguchi,SRF2007,10.71 New Tuners for ILC Cavity Application Shuichi Noguchi KEK.
1/28/04Don Hartill, MC MHz SCRF cavity development Don Hartill LEPP, Cornell University.
Compatibility in the ILC ML. 主なデザインと相違点 BCD ( TTF) STF-BL その他 空洞、シー ル Φ 78 mm ビームパイ プ、アルミヘキサゴ ン Φ 80 mm ビームパイ プ、インジウムヘリ コ LL, Re 入力カプ ラー TTF-III 円筒セラミック窓.
S.Noguchi (KEK) ILC08 Chicago , Nov . 17, Cavity Package Test in STF STF Phase-1 E. Kako, S. Noguchi, H. Hayano, T. Shishido, M. Sato, K. Watanabe,
Dr G Burt (CI), Dr R. Rimmer (Jlab), H. Wang (Jlab) & B. Hall (CI)
Shuichi NoguchiHayama ILC Lecture, Part III ILC BCD Cavity  Maximum Use of Potential Performance  Maximum Use of each Cavity Performance 
Group 6 / A RF Test and Properties of a Superconducting Cavity Mattia Checchin, Fabien Eozénou, Teresa Martinez de Alvaro, Szabina Mikulás, Jens Steckert.
Advances in Large Grain Resonators Activities of DESY, W.C. Heraeus and RI material and fabrication aspects preparation and RF test results W. Singer,
1Matthias LiepeAugust 2, 2007 Future Options Matthias Liepe.
56 MHz SRF Cavity and Helium vessel Design
704 MHz warm cavity November 4, 2015 A.Zaltsman: SRF & warm RF components for LEReC1  A single cell 704 MHz warm cavity is used to correct the beam energy.
Advances in Development of Diffused Nb3Sn Cavities at Cornell
IHEP GHz 9-cell Cavity R&D Status and Plan The Third IHEP-KEK 1.3GHz SC Technology Collaboration Meeting Dec. 7-8, 2010, IHEP, Beijing GAO Jie,
ALCPG2011, 3/19- 23, SRF Group Institute of Heavy Ion Physics, Peking University ALCPG /3/19-23, Eugene, Oregon, USA RF superconducting Cavity.
The Superconducting cavities of the European Spallation Source Superconducting Technologies Workshop CERN – 4 & 5 December 2012 Sébastien Bousson (CNRS/IN2P3/IPN.
Hayama ILC Lecture, , Shuichi Noguchi 1 Part III ILC BCD Cavity  Maximum Use of Potential Performance  Maximum Use of each Cavity Performance.
Mechanical Analysis Thermal Analysis Ø78 mm Ø106 mm L CLASSE facilities are operated by the Cornell Laboratory for Elementary Particle Physics (LEPP) and.
ESS AD RETREAT 5 th December 2011, Lund “A walk down the Linac” SPOKES Sébastien Bousson IPN Orsay.
Shuichi Noguch, KEK 6-th ILC School, November RF Basics; Contents  Maxwell’s Equation  Plane Wave  Boundary Condition  Cavity & RF Parameters.
Preparation procedure and RF processining of cERL-ML power coupler at KEK Hiroshi Sakai, Takaaki Furuya, Masato Sato, Kenji Shinoe, Kensei Umemori, Kazuhiro.
Page 1 Jean Delayen Center for Accelerator Science Old Dominion University RF Dipole Cavity Design and Plans LARP Review Fermilab, 10 June 2013.
1 Project X Workshop November 21-22, 2008 Richard York Chris Compton Walter Hartung Xiaoyu Wu Michigan State University.
7th SRF Materials Workshop FRIB SRF Cavities 7/16/12 Chris Compton.
Andrew BurrillFall 2011 Project X Collaboration Meeting 650 MHz Developments at JLAB Andrew Burrill for the JLab Team.
11/12/2013P. Bosland - AD-retreat - Lund Designs of the Spoke and Elliptical Cavity Cryomodules P. Bosland CEA/Saclay IRFU On behalf of the cryomodule.
Engineering Design of Raon SC Cavities Myung Ook Hyun SCL Team Myung Ook Hyun SCL Team.
Shuichi Noguchi, KEKTTC Meeting at IHEP Beijin, Slide Jack Tuner.
Thomas Jefferson National Accelerator Facility Page 1 FNAL September 11, 2009 Design Considerations for CW SRF Linacs Claus H. Rode 12 GeV Project Manager.
Shuichi NoguchiTTC Meeting at Milano, Injector Cryomodule for cERL at KEK Cavity 2 Prototypes were tested. Input Coupler 2 Couplers were tested.
Page 1 Subashini De Silva Center for Accelerator Science Department of Physics, Old Dominion University and Thomas Jefferson National Accelerator Facility.
TDR guideline discussion on Cavity Integration
WP5 Elliptical cavities
(4 areas/website front)
T5.2: Harmonization - Material and Component Reference
SCRF 21-25/Apr/2008 Measurement & Calculation of the Lorentz Detuning for the transient response of the resonant cavity Introduction “Two.
Activities of Cavity Fabrication Facility at KEK
ELLIPTICAL SCRF CAVITIES
SPS – RFD Experience and Evolution to LHC
SC spoke cavity for China-ADS 3~10MeV injector
Cost reduction activities in cavity fabrication at MHI
Jiyuan Zhai ( IHEP ) TTC Meeting, JLAB, 6 Nov 2012
High Gradient Cavities: Cost and Operational Considerations
Y. Yamamoto, H. Hayano, E. Kako, S. Noguchi, M. Sato, T. Shishido, K
The broken HOM Couplers on 3.9 GHz Cavity #2
Development of the SRF Cavity Design for the Cooler ERL
Case study 6 Properties and test of a Superconducting RF cavity
Performance of Large Grain TESLA cavities
Cryomodules Challenges for PERLE
Presentation transcript:

Shuichi Noguchi 、 KEK 6-th ILC School, November Superconducting Cavity  Design ( RF, Mechanical, Thermal )  Material  Fabrication Techniques  Surface Treatment  Surface Inspection  Vertical Measurement  Cavity Behavior  Diagnostics Part-1

Shuichi Noguchi 、 KEK 6-th ILC School, November SRF Cavity Peculiarities  Surface Condition is essential, but is usually irregular and contaminated.  No Theory except BCS Surface Resistance.  RF Magnetic Field Limit ?  Many Steps in Production & Clean Works to realize Ideal Surface

Shuichi Noguchi 、 KEK 6-th ILC School, November SRF Cavity Peculiarities PropertyRealityConsequence SuperconductingNeed Helium Thin Wall for better Cooling Nb, Type II Need Magnetic ShieldEven Hext << Hc 1 Multi Layer Structure MaterialNot Uniform, Not IdealGrain Boundary Large Grain ? Contaminated SurfaceIrregularity, Contamination Lattice Orientation Field Enhancement, H & E RF SuperconductivityNot Lossless but Very Low LossResidual Surface Resistance0.3 nΩ/ mgauss Maximum Field Limit Smooth Shape, Less Holes High Impedance 、 HOM Need HOM Dumper StructureMaterial is ExpensiveThin WallMechanical Stability, Coating ProductionDeep Drawing + Machining + EBW Defect Quench Surface Treatment Chemical Treatment + Ultra pure Water Rinsing ContaminationQuench, Field Emission AssemblyClass 10 Clean Room Scatter of Performance PeripheralThermal Insulation in Vacuum Many Critical Components Ceramic Break Others Vacuum Seal

Shuichi Noguchi 、 KEK 6-th ILC School, November Superconducting Cavity Accelerator Users Cryostat Refrigerator High Power RF Low Level RF Input Coupler HOM Coupler Tuner Forming, EBW Surface Treatment Particle Physics Material Science Medical Application Design

Shuichi Noguchi 、 KEK 6-th ILC School, November Design Process Design ParametersInputConstraints Frequency, StructureAccelerating, Deflecting,.... Mode Particle β gap Length Ring / Linac Iris Aperture Operating GradientAccelerator Scale, CW / PulseBeam Power (Coupler) Cooling Power Material Operating TemperatureFrequency, Structure, GradientCooling Power Cavity Unit LengthBeam Current, GradientBeam Power (Coupler) Accelerator ScaleHOM damping Module LengthAccelerator Scale If Pbeam>>Pcavity  Normal

Shuichi Noguchi 、 KEK 6-th ILC School, November  > 0.4  < 0.4 Particlee, ProtonProton, Ion Frequency Ring 0.3~0.5 GHz Linac 0.7~3 GHz Linac 50~300 MHz Beam Current Ring >1 A Linac > 100 mA > 1mA< 1mA Accelerating Elliptical Spoke, Spoke, Half Wave, Quarter Wave DeflectingCrab Cavities FocusingRFQ Structure Examples

Shuichi Noguchi 、 KEK 6-th ILC School, November Accelerating Gap g E E z Space Distribution g

Shuichi Noguchi 、 KEK 6-th ILC School, November Accelerating Gap g g ~  Small  enough g Lower Frequency  -Mode 0-Mode

Shuichi Noguchi 、 KEK 6-th ILC School, November Eacc Acceleration by RF Cavity Frequency Shape Beam RF Resonator, Strong E field on axis Z   - Mode

Shuichi Noguchi 、 KEK 6-th ILC School, November Cavity RF Parameters

Shuichi Noguchi 、 KEK 6-th ILC School, November General RF Design PreferenceCompromise Power EfficiencyHigher R sh R sh of HOM Aperture Acceleration Efficiency Enough Acceleration GapFrequency Cavity Size Multi-Gap/Cell Beam QualityEnough ApertureR sh

Shuichi Noguchi 、 KEK 6-th ILC School, November Q-E Curves ( Performance ) Q0Q0 Quench ? Global Heating Q Switch Field Emission Ideal (Constant Q = Constant R s, T) Quench Multipacting Q Slope H Q-Dieses Eacc

Shuichi Noguchi 、 KEK 6-th ILC School, November RFQ INFN-Legnaro Difficulty High Power Coupler End Flange Contact Frequency Tuning

Shuichi Noguchi 、 KEK 6-th ILC School, November Quarter Wave ( /4) & Split Ring ANL Coaxial Resonator Mechanical Vibration, High Power Coupler

Shuichi Noguchi 、 KEK 6-th ILC School, November Half Beam

Shuichi Noguchi 、 KEK 6-th ILC School, November Half to Spoke By Squeezing the Height

Shuichi Noguchi 、 KEK 6-th ILC School, November Multicell Spoke

Shuichi Noguchi 、 KEK 6-th ILC School, November Two Axis Coupled Cavity Acceleration Beam Coupler Drive Beam

Shuichi Noguchi 、 KEK 6-th ILC School, November Smaller R iris R / Q ; Larger E sp / E acc ; Smaller H sp / E acc ; Smaller Cell Coupling ; Smaller Cleaning ; More Difficult Alignment ; Tight RF Design,  = 1

Shuichi Noguchi 、 KEK 6-th ILC School, November The mechanical design of a cavity follows its RF design: Lorentz Force Detuning Mechanical Resonances Mechanical Design Cavities Lorentz Force Detuning E and H at E acc = 25 MV/m in TESLA inner-cup 50 MV/m 92 kA/m Mechanical Design

Shuichi Noguchi 、 KEK 6-th ILC School, November Surface deformation without and with stiffening ring (courtesy of I. Bonin, FERMI) Mechanical Design Cavities m 3∙10 -5 m No stiffening ring Wall thickness 3mm Stiffening ring at r=54mm Wall thickness 3mm k L = -1 Hz/(MV/m) 2 Essential for the operation of a pulsed accelerator Δf = k L (E acc ) 2 Lorentz Force Deformation - df

Shuichi Noguchi 、 KEK 6-th ILC School, November Lorentz ( Maxwell ) Detuning K ja cket K tuner K cavity FZFZ FZFZ FzFz FrFr 42 N 135 N E acc = 35MV/m TTF Saclay-ISTF Slide JackBlade AHz / (MeV/m) (TESLA) BN / (MeV/m) df / dlHz /μm300 KSKS N /μm K jacket N /μm K tuner N /μm Stationary Δf (31.5 MV/m)Hz  f (Compensation) Hz Necessary Tuning Strokeμm

Shuichi Noguchi 、 KEK 6-th ILC School, November Deformation is the Sum of all the Mechanical Modes

Shuichi Noguchi 、 KEK 6-th ILC School, November Two Dominant Mechanical Modes Single –Cell ~ + ~2500Hz~200Hz Need Stiff Cavity Need Stiff Jacket-Tuner System 2-nd order modeFundamental mode F(H 2 ) F(E 2 )

Shuichi Noguchi 、 KEK 6-th ILC School, November /9  mode 204Hz 2/9  mode 376Hz 3/9  mode 548Hz FixFree Longitudinal Modes 9000N by Tuner

Shuichi Noguchi 、 KEK 6-th ILC School, November Transverse Modes 1/9  56Hz 2/9  141Hz 3/9  251Hz

Shuichi Noguchi 、 KEK 6-th ILC School, November Material  High Purity Niobium is almost an unique Choice at the moment. RRR~300 Pb ( Plating ) was used for some Application. Nb 3 Sn (Vapor Deposition + Heat Treatment) NbTiN (Sputtering) High T c Materials are still very difficult.

Shuichi Noguchi 、 KEK 6-th ILC School, November Niobium Sheet Fabrication

Shuichi Noguchi 、 KEK 6-th ILC School, November Niobium Insufficient recrystallization, formability and mechanical properties are effected Fully recrystallized material after appropriate heat treatment (after rolling operation) X. Singer, DESY

Shuichi Noguchi 、 KEK 6-th ILC School, November Large Grain directly from Ingot Lattice Orientation, Slippage at Boundary

Shuichi Noguchi 、 KEK 6-th ILC School, November Property of Nb 2~5kRoom Temperature Density8.57 Lattice StructureB.C.C Melting Temperature 2468 ℃ Conductivity ~ 2x10 9   ・ m Thermal Conductivity 20 ~ 50 W / m ・ k Yield Strength~ 600 MPa~ 40 MPa Tensile Strength~ 900 MPa~ 160 MPa Elongation~ 15%~ 40% Yang Module~ 100 GPa Vickers Hardness~ 500 MPa

Shuichi Noguchi 、 KEK 6-th ILC School, November Niobium Thermal Conductivity  Post-Purification Treatment (G.R.Myneni, Jlab) RRR ; Residual Resistance Ratio Wiedemann-Franz

Shuichi Noguchi 、 KEK 6-th ILC School, November Cooling Efficiency (SRF93’)Temperature Mapping System Quench LimitHeat Flux He-I / He-II 1.8K 4.2K (EPAC96’) 2.17K

Shuichi Noguchi 、 KEK 6-th ILC School, November Cavity Fabrication

Shuichi Noguchi 、 KEK 6-th ILC School, November Cavity (9 Zeller) Endhalbzell- Endrohr- Einheit kurz Endhalbzell- Endrohr- Einheit lang Flansch (Hauptkoppler- Stutzen) Flansch (Endflansch) HOM-Koppler kurze Seite Rippe Anbindung (end-kurz-lang) Endhalbzelle kurz Antennenflansch NW 12 HOM-Koppler DESY End-kurz-lang Formteil F Bordscheibe lange Seite Endhalbzelle lang Flansch (end-kurz-lang) HOM-Koppler lange Seite Flansch (Endflansch) Antennenstutzen lang Endrohr lang Antennenflansch NW 12 Formteil F lang HOM-Koppler DESY End-kurz-lang Hauptkoppler- stutzen Endrohr kurz Cavity (9 cell TESLA / TTF design) End group 1End group 2 Hantel Normalhalb- Zelle Normalhalb- Zelle Stützring Nb-Blech Normalhalelle Nb-Blech Normalhalbzelle Dumb-bell Overview over cavity fabrication

Shuichi Noguchi 、 KEK 6-th ILC School, November Fabrication of STF Baseline Cavities Center-cells (Tokyo Denkai ; RRR~300 Nb) End-groups HOM coupler Magnetic Shield

Shuichi Noguchi 、 KEK 6-th ILC School, November Half Cell Press Forming Iris Thinner Equator Thicker

Shuichi Noguchi 、 KEK 6-th ILC School, November Fabrication

Shuichi Noguchi 、 KEK 6-th ILC School, November Beam Pipe & HOM Coupler Wire cutting of Nb Brock Beam tube HOM Coupler

Shuichi Noguchi 、 KEK 6-th ILC School, November Deepdrawing & Port Forming

Shuichi Noguchi 、 KEK 6-th ILC School, November End Group Ti End Plate End cell & End group

Shuichi Noguchi 、 KEK 6-th ILC School, November Electron Beam Welding (Jlab) DumbbellsStiffening Rings

Shuichi Noguchi 、 KEK 6-th ILC School, November Dumbbells With Stiffener

Shuichi Noguchi 、 KEK 6-th ILC School, November

Shuichi Noguchi 、 KEK 6-th ILC School, November Electron Beam Welding (Jlab)

Shuichi Noguchi 、 KEK 6-th ILC School, November STF Baseline Cavity

Shuichi Noguchi 、 KEK 6-th ILC School, November Other Fabrication Technique  Hydro forming (W.Singer,DESY)Spinning (V.Palmieri,INFN Legnaro)

Shuichi Noguchi 、 KEK 6-th ILC School, November Thin Niobium Films Sputtering