Z.Djurcic, D.Leonard, A.Piepke Physics Dept, University of Alabama, Tuscaloosa AL P.Vogel Physics Dept Caltech, Pasadena CA A. Bellerive, M. Dixit, C.

Slides:



Advertisements
Similar presentations
SNOLAB and EXO David Sinclair SNOLAB Workshop August 2005.
Advertisements

Program Degrad.1.0 Auger cascade model for electron thermalisation in gas mixtures produced by photons or particles in electric and magnetic fields S.F.Biagi.
Neutrino Masses double beta decay oscillations Majorana Dirac.
Light and charge collection with a new Micromegas-TPC Light and charge collection with a new Micromegas-TPC Leila Ounalli Neuchâtel University CHIPP workshop.
LBNE 35 ton prototype Phase 1 summary Terry Tope Fermi National Accelerator Laboratory All Experimenters’ Meeting – Fermilab – May 19, 2014.
Progress on a Gaseous Xe detector for Double Beta Decay (EXO) David Sinclair Xenon Detector Workshop Berkeley, 2009.
M. Carson, University of Sheffield, UKDMC ILIAS-Valencia-April Gamma backgrounds, shielding and veto performance for dark matter detectors M. Carson,
Azriel Goldschmidt on work with David Nygren
Reflectivity Measurements of Critical Materials for the LUX Dark Matter Experiment Theory My experiment was a cyclic process involving software, engineering,
Dark Matter Searches with Dual-Phase Noble Liquid Detectors Imperial HEP 1st Year Talks ‒ Evidence and Motivation ‒ Dual-phase Noble Liquid Detectors ‒
M. Dracos 1 Double Beta experiment with emulsions?
Charles Prescott - SLAC Neutrino Day - April 18, 2003 The Search for Neutrinoless Double Beta Decay - Physics Motivations - Limits from ν oscillations.
14 June 2005EXO SLAC DOE Pgm Rev M. Breidenbach1 D.Leonard, A.Piepke Physics Dept, University of Alabama, Tuscaloosa AL P.Vogel Physics Dept Caltech, Pasadena.
The XENON Project A 1 tonne Liquid Xenon experiment for a sensitive Dark Matter Search Elena Aprile Columbia University.
TeVPA Current Status of The EXO-200 Experiment Kevin O’Sullivan Stanford University 136 Xe 136 Ba e - (+ 2ν e )
Search for Neutrinoless double beta-decays with the Enriched Xenon Observatory Derek Mackay and Nicole Ackerman.
Z.Djurcic, D.Leonard, A.Piepke Physics Dept, University of Alabama, Tuscaloosa AL P.Vogel Physics Dept Caltech, Pasadena CA A. Bellerive, M. Dixit, C.
Jun 2, 2004EXO - SLAC Program Review1 Z.Djurcic, D.Leonard, A.Piepke Physics Dept, University of Alabama, Tuscaloosa AL P.Vogel Physics Dept Caltech, Pasadena.
Status of EXO-200 Carter Hall, University of Maryland DUSEL town meeting November 4, 2007.
PANDAX Results and Outlook
Search for Dark Matter at CJPL with PANDAX
Proportional Light in a Dual Phase Xenon Chamber
EXO-Development Program DUSEL Workshop Washington, November 2007 David Sinclair Carleton/TRIUMF.
M. Dracos, CEA, 10/04/ Double Beta experiment with emulsions?
EXO-GAS Detector Status report for the SNOLAB EAC August 2007.
Full EXO in Cryopit Cryopit Workshop August 2011 David Sinclair.
EXO Gas Progress and Plans October, 2008 David Sinclair.
NEMO-3  experiment First Results and Future Prospects Ruben Saakyan, UCL UK HEP Neutrino Forum The Cosener’s House, Abingdon.
ZEPLIN II Status & ZEPLIN IV Muzaffer Atac David Cline Youngho Seo Franco Sergiampietri Hanguo Wang ULCA ZonEd Proportional scintillation in LIquid Noble.
I. Giomataris NOSTOS Neutrino studies with a tritium source Neutrino Oscillations with triton neutrinos The concept of a spherical TPC Measurement of.
Development of A Scintillation Simulation for Carleton EXO Project Rick Ueno Under supervision of Dr. Kevin Graham.
6/11/11TIPP Ba Tagging activities in EXO Karl Twelker Stanford University Enriched Xenon Observatory TIPP Conference June 11, 2011.
1 The GEM Readout Alternative for XENON Uwe Oberlack Rice University PMT Readout conversion to UV light and proportional multiplication conversion to charge.
CRESST Cryogenic Rare Event Search with Superconducting Thermometers Max-Planck-Institut für Physik University of Oxford Technische Universität München.
2004/Dec/12 Low Radioactivity in CANDLES T. Kishimoto Osaka Univ.
LRT2004 Sudbury, December 2004Igor G. Irastorza, CEA Saclay NOSTOS: a spherical TPC to detect low energy neutrinos Igor G. Irastorza CEA/Saclay NOSTOS.
Neutron scattering systems for calibration of dark matter search and low-energy neutrino detectors A.Bondar, A.Buzulutskov, A.Burdakov, E.Grishnjaev, A.Dolgov,
9-June-2003NDM2003 M. Nomachi M. Nomachi OSAKA University and MOON collaboration MOON (Mo Observatory Of Neutrinos) for double beta decay Photo by
1 Liquid Argon Dark Matter: Synergies with R&D for Neutrino Detectors: Chemically clean Argon for drifting electrons and light output (Oxygen and H20 relevant.
I. Giomataris NOSTOS a new low energy neutrino experiment Detect low energy neutrinos from a tritium source using a spherical gaseous TPC Study neutrino.
VIeme rencontres du Vietnam
Tracking (wire chamber) Shield radon, neutron,  Source foil (40 mg/cm 2 ) Scintillator + PMT 2 modules 2  3 m 2 → 12 m 2 Background < 1 event / month.
Stefano Pirro – NuMass 2010 Stefano Pirro Double beta decay searches with enriched and scintillating bolometers - Milano - Bicocca The Future of Neutrino.
Future Possibilities for Measuring Low Mass Lepton Pairs in Christine Aidala for the Collaboration Quark Matter 2002, Nantes.
1/27/2016Katsushi Arisaka 1 University of California, Los Angeles Department of Physics and Astronomy Katsushi Arisaka XAX 10.
NEMO3 experiment: results G. Broudin-Bay LAL (CNRS/ Université Paris-Sud 11) for the NEMO collaboration Moriond EW conference La Thuile, March 2008.
Results of the NEMO-3 experiment (Summer 2009) Outline   The  decay  The NEMO-3 experiment  Measurement of the backgrounds   and  results.
Stefano Torre University College London for NEMO3 and SuperNEMO collaborations Half day IoP Meeting 12 Oct 2011 Outline 0νββ and 2νββ Observation technique.
A screening facility for next generation low-background experiments Tom Shutt Case Western Reserve University.
Current status of XMASS experiment 11 th International Workshop on Low Temperature Detectors (LTD-11) Takeda Hall, University of Tokyo, JAPAN 8/1, 2005.
DARK MATTER SEARCH Carter Hall, University of Maryland.
The COBRA Experiment Jeanne Wilson University of Sussex, UK On behalf of the COBRA Collaboration TAUP 2007, Sendai, Japan.
I. Giomataris, CEA-Irfu-France
1 Status and background considerations of XMASS experiment Yeongduk Kim Sejong University for the XMASS collaboration LRT2006 Oct. 3, 2006.
A Gas Option for EXO David Sinclair EXO Week January 2006 Note – Most of the ideas here come from a discussion with Bill.
Double Beta Decay - status and future Double beta decay basics Double beta decay basics Experimental challenges Experimental challenges Current experimental.
ZEPLIN III Position Sensitivity PSD7, 12 th to 17 th September 2005, Liverpool, UK Alexandre Lindote LIP - Coimbra, Portugal On behalf of the ZEPLIN/UKDM.
Second Workshop on large TPC for low energy rare event detection, Paris, December 21 st, 2004.
Thorsten Lux. Charged particles X-ray (UV) Photons Cathode Anode Amplification Provides: xy position Energy (z position) e- CsI coating 2 Gas (Mixture)
Slides for IG NewS : GG – analysis june juin 2016 Spherical detector: recent developments I. Giomataris, CEA-Irfu-France Spherical detector at.
The EXO-200 Detector Razvan Gornea for the EXO Collaboration LHEP, Center for Research and Education in Fundamental Physics, Bern University Frontier Detectors.
0νDBD Experimental Review and 136 Xe With HP Gas at CJPL 季向 东.
Status of EXO experiment F. Juget Université de Neuchâtel.
NEXT: A Neutrinoless 2  Experiment with a Gaseous XeTPC Thorsten Lux IFAE Barcelona in behalf of the NEXT Collaboration.
Search for Neutrinoless Double-Beta Decay Werner Tornow Duke University & Triangle Universities Nuclear Laboratory (TUNL) & Kavli-Tokyo Institute of the.
The COBRA Experiment: Future Prospects
The Heidelberg Dark Matter Search Experiment
XAX Can DM and DBD detectors combined?
• • • Ge measurements for SuperNEMO
Double Beta experiment with emulsions?
Presentation transcript:

Z.Djurcic, D.Leonard, A.Piepke Physics Dept, University of Alabama, Tuscaloosa AL P.Vogel Physics Dept Caltech, Pasadena CA A. Bellerive, M. Dixit, C. Hargrove, D. Sinclair Carleton University, Ottawa, Canada W.Fairbank Jr., S.Jeng, K.Hall Colorado State University, Fort Collins CO M.Moe Physics Dept UC Irvine, Irvine CA D.Akimov, A.Burenkov, M.Danilov, A.Dolgolenko, A.Kovalenko, D.Kovalenko, G.Smirnov, V.Stekhanov ITEP Moscow, Russia J. Farine, D. Hallman, C. Virtue Laurentian University, Canada M.Hauger, L.Ounalli, D.Schenker, J-L.Vuilleumier, J-M.Vuilleumier, P.Weber Physics Dept University of Neuchatel, Neuchatel Switzerland M.Breidenbach, R.Conley, C.Hall, A.Odian, C.Prescott, P.Rowson, J.Sevilla, K.Skarpaas, K.Wamba, SLAC, Menlo Park CA E.Conti, R.DeVoe, G.Gratta, M.Green, T.Koffas, R.Leon, F.LePort, R.Neilson, S.Waldman, J.Wodin Physics Dept Stanford University, Stanford CA Enriched Xenon Observatory for double beta decay

Double Beta Decay - - d(n) u(p) e c e e W W d(n)u(p) c e e - c eReR W d(n) u(p) W e - eLeL

To improve on T 12 0 and : need large source mass lower background, better event signature

E ee dN dt    E0E0 (A,Z) 0+ (A,Z+1) (A,Z+2) E0E0 e-e-e-e- Popular candidates E 0 (MeV)Abundance (%) Ca 76 Ge Se 82 Kr Mo 100 Ru Te 128 Xe Te 130 Xe Xe 136 Ba Nd 150 Sm Th 232 U 238 U 238 Pu dir dir, geo dir dir, geo dir melking dir

Isotopic enrichment for a gaseous substance like Xe is most economically achieved by ultracentrifugation This separation step that rejects the light fraction is also very effective in removing 85 Kr (T 1/2 =10.7 yr) that is present in the atmosphere from spent fuel reprocessing Russia has enough production capacity to process 100 ton Xe and extract up to 10 ton 136 Xe in a finite time

NucleusQRPA Caltech Shell model Strasbourg- Madrid exp 48 Ca x Ge x Se x Mo x Te x Te X Te x Xe<1.0<2.6>8.1 x direct geochem. 

Enriched Xenon Observatory for double beta decay Alabama, Caltech, Carleton, Colorado, UC Irvine, ITEP Moscow, Laurentian, Neuchatel, SLAC, Stanford Ba+ system best studied (Neuhauser, Hohenstatt, Toshek, Dehmelt 1980) Very specific signature “shelving” Single ions can be detected from a photon rate of 10 7 /s 2 P 1/2 4 D 3/2 2 S 1/2 493nm 650nm metastable 47s Much improved signature! 136 Xe: 136 Ba++ e- e- final state can be tagged using optical spectroscopy (M.Moe PRC44 (1991) 931) optical spectroscopy (M.Moe PRC44 (1991) 931)

Two detector options under consideration High Pressure gas TPC High Pressure gas TPC 5-10 atm, 50 m 3 modules, 5-10 atm, 50 m 3 modules, 10 modules for 10 t 10 modules for 10 t Xe enclosed in a non-structural bagXe enclosed in a non-structural bag  range ~5-10cm:  range ~5-10cm: can resolve 2 blobs can resolve 2 blobs 2.5m e-drift at ~250kV2.5m e-drift at ~250kV Readout Xe scintillation withReadout Xe scintillation with WLSB (T0) WLSB (T0) Additive gas: quenching andAdditive gas: quenching and Ba ++ Ba + neutralization Ba ++ Ba + neutralization Steer lasers or drift Ba-ion toSteer lasers or drift Ba-ion to detection region detection region Liquid Xe chamber Liquid Xe chamber Very small detector (3m 3 for 10tons)Very small detector (3m 3 for 10tons) Need good E resolutionNeed good E resolution Position info but blobs not resolvedPosition info but blobs not resolved Readout Xe scintillationReadout Xe scintillation Can extract Ba from hi-density XeCan extract Ba from hi-density Xe Spectroscopy at low pressure:Spectroscopy at low pressure: 136 Ba (7.8% nat’l) different 136 Ba (7.8% nat’l) different signature from natural Ba signature from natural Ba (71.7% 138 Ba) (71.7% 138 Ba) No quencher needed, neutralizationNo quencher needed, neutralization done outside the Xe done outside the Xe

e -, 232 Th  (E)/E=3.4 % at 1.59 MeV  (E)/E= 2.7 % at 2.48 MeV Gotthard 5 bar xenon  (from cathode), 210 Po ( 238 U chain) quenching (  /e - )=1/6.5  (E)/E=1.1 % at 2.48 MeV ! Energy resolution F=0.19, W=22 eV  (E)/E=0.13 % at 2.48 MeV !

Light detection (electroluminescence) in xenon (+CF4?) Doped fibers : 1 step WLS UV (180 +/-20nm) to blue or 2 step WLS with coated fibers e- track Optical fibers x-y Multianode photomultiplier Grid (metallic cloth) UV photons Anode (charge) Two gap scheme: Grid (metallic cloth) anode ITEP-Moscow, Kharkov, Neuchâtel Fibers (250  m)

1 kV/cm Found a clear (anti)correlation between ionization and scintillation ~570 keV Major effort now: liquid xenon

Have demonstrated that we can get sufficient energy resolution in LXe to separate the 2 ν from the 0 ν modes We can do ionization measurements as well as anyone Now we turn on our new correlation technique… Resolutions at 570 keV or

Fishing ions in LXe

Initial Ra/Th ion grabbing successful As expected release from a finite size metallic tip is challenging 214 Po (164ms) 230 U (20.8d) 222 Ra (38s) 210 Pb (22yr) 226 Th (30.5min) 218 Rn (35ms) 5.99MeV 6.45MeV 6.68MeV 7.26MeV 7.83MeV α 230 U source α spectrum as delivered by LLNL and measured in vacuum α spectrum from whatever is grabbed by the tip (in Xe atmosphere) α α α α

Ion Trap R&D at UHV/atmospheric pressure RF quadrupole trap loaded in UHV from a Ba dispenser and e-beam ionizer Xe can be injected while observing the ions

CCD Image of Ba + ions in the trap Trap edge

Indeed we are talking about single ions: one can load the trap with multiple ions and then observe the signal intensity as ions are dropped one by one… Zero ion background All above in UHV; Perform the same experiment in noble gas atmosphere

In parallel, build liquid TPC prototype, without Ba tagging Prototype Scale: –200 Kg enriched 136 Xe –All functionality of EXO except Ba identification –Operate in WIPP for ~two years Prototype Goals: –Test all technical aspects of EXO (except Ba id) –Measure 2 mode –Set decent limit for 0 mode (probe Heidelberg- Moscow)

Massive materials qualification program led by Alabama with contributions from Carleton, Laurentian and Neuchatel Approximate detector simulation with material properties to establish target activities NAA whenever possible (MIT reactor + Alabama) Direct Ge counting at Neuchatel, Alabama and soon Canada High sensitivity mass spectroscopy starting in Canada Alpha counting at Carleton and Stanford Rn outgassing measurements starter at Laurentian (Xe plumbing) Full detector simulation in progress

Detector (356 on each side, 16 mm diameter 120 % QE in UV)) Teflon vessel

APD plane below crossed wire array 100 APD channels (7 APD grouped together) provide light and t0 200 ionization channels (groups of wires 100 x +100 y) Can define fiducial volume

Cryostat Cross Section Condenser Xenon Heater should be on this area Xenon Chamber Outer Copper Vessel Inner Copper Vessel FC-87 1” thick Thermal Insulation (MLI- vacuum), not shown to scale Outer Door Inner Door Xenon Chamber Support

Full detector view With Pb shielding

DoE’s Waste Isolation Pilot Plant (WIPP), Carlsbad NM

Status Enriched Xe in hand. Clean room installed at Stanford. WIPP agreement, including Environmental Impact, complete. Cryostat being designed. Xe purification and refrigeration issues being finalized Detector vessel, readout, and electronics being engineered.

200 kg prototype, estimated sensitivity, without Ba tagging Estimate background from radioactivity (2  negligible) Mass (kg) Enrichment (%) Eff. (%)  MeV (%) Time (yr) Background (events) T 1/2 0 (yr) (eV) RQRPA * V. A. Rodin et al. Phys.Rev. C68 (2003)

Ultimate sensitivity, assuming 1) that the Xe chamber + Ba tagging gives 0 background from radioactivity... 2) that the energy resolution is  (E)/E=2 % (2  background!) Conclusion: With a coordinated effort, the meV region is within reach! Mass (kg) Enrichment (%) Eff. (%)  MeV (%) Time (yr) Background (events) T 1/2 0 (yr) (eV) RQRPA (use 1) 0.7 (use 1) 2.0* *