Software Verification 2 Automated Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität and Fraunhofer Institut für.

Slides:



Advertisements
Similar presentations
Model Checking Lecture 4. Outline 1 Specifications: logic vs. automata, linear vs. branching, safety vs. liveness 2 Graph algorithms for model checking.
Advertisements

Software Verification 2 Automated Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität and Fraunhofer Institut für.
Software Verification 1 Deductive Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer Institut.
Representing Boolean Functions for Symbolic Model Checking Supratik Chakraborty IIT Bombay.
CS 267: Automated Verification Lecture 2: Linear vs. Branching time. Temporal Logics: CTL, CTL*. CTL model checking algorithm. Counter-example generation.
M ODEL CHECKING -Vasvi Kakkad University of Sydney.
Algorithmic Software Verification VII. Computation tree logic and bisimulations.
BDDs & Theorem Proving Binary Decision Diagrams Dr. Eng. Amr T. Abdel-Hamid NETW 703 Winter 2012 Network Protocols Lectures are based on slides by: K.
Hardware and Petri nets Symbolic methods for analysis and verification.
Planning based on Model Checking Dept. of Information Systems and Applied CS Bamberg University Seminar Paper Svetlana Balinova.
Automatic Verification Book: Chapter 6. What is verification? Traditionally, verification means proof of correctness automatic: model checking deductive:
An Introduction to the Model Verifier verds Wenhui Zhang September 15 th, 2010.
IT University of Copenhagen Lecture 7: BDD Construction and Manipulation 1. BDD construction 2. Boolean operations on BDDs 3. BDD-Based configuration.
Qualitätssicherung von Software (SWQS) Prof. Dr. Holger Schlingloff Humboldt-Universität zu Berlin und Fraunhofer FOKUS : Modellprüfung II - BDDs.
SYMBOLIC MODEL CHECKING: STATES AND BEYOND J.R. Burch E.M. Clarke K.L. McMillan D. L. Dill L. J. Hwang Presented by Rehana Begam.
Formal Methods of Systems Specification Logical Specification of Hard- and Software Prof. Dr. Holger Schlingloff Institut für Informatik der.
SAT and Model Checking. Bounded Model Checking (BMC) A.I. Planning problems: can we reach a desired state in k steps? Verification of safety properties:
Formal Methods of Systems Specification Logical Specification of Hard- and Software Prof. Dr. Holger Schlingloff Institut für Informatik der.
Formal Methods of Systems Specification Logical Specification of Hard- and Software Prof. Dr. Holger Schlingloff Institut für Informatik der.
Formal Methods of Systems Specification Logical Specification of Hard- and Software Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt.
Formal Methods of Systems Specification Logical Specification of Hard- and Software Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt.
Formal Methods of Systems Specification Logical Specification of Hard- and Software Prof. Dr. Holger Schlingloff Institut für Informatik der.
© 2011 Carnegie Mellon University Binary Decision Diagrams Part Bug Catching: Automated Program Verification and Testing Sagar Chaki September.
© 2011 Carnegie Mellon University Binary Decision Diagrams Part Bug Catching: Automated Program Verification and Testing Sagar Chaki September.
ECE Synthesis & Verification - Lecture 18 1 ECE 697B (667) Spring 2006 ECE 697B (667) Spring 2006 Synthesis and Verification of Digital Systems Word-level.
1 CSEP590 – Model Checking and Automated Verification Lecture outline for July 16, 2003.
 2001 CiesielskiBDD Tutorial1 Decision Diagrams Maciej Ciesielski Electrical & Computer Engineering University of Massachusetts, Amherst, USA
IT University of Copenhagen Lecture 8: Binary Decision Diagrams 1. Classical Boolean expression representations 2. If-then-else Normal Form (INF) 3. Binary.
Formal Methods of Systems Specification Logical Specification of Hard- and Software Prof. Dr. Holger Schlingloff Institut für Informatik der.
A Simple Model Checker for CTL. The problem n We need efficient algorithms to solve the problems [1]M,s  [2]M,s  where M should have finitely many states,
Binary Decision Diagrams (BDDs)
Model Checking Lecture 4 Tom Henzinger. Model-Checking Problem I |= S System modelSystem property.
Software Verification 2 Automated Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität and Fraunhofer Institut für.
1 Software Model Checking Andrey Rybalchenko Max Planck Institute for Software Systems Incomplete notes summarizing the 2 nd lecture, Nov 5 th, 2007.
CS 267: Automated Verification Lecture 6: Binary Decision Diagrams Instructor: Tevfik Bultan.
Algorithmic Software Verification V &VI. Binary decision diagrams.
Daniel Kroening and Ofer Strichman 1 Decision Procedures An Algorithmic Point of View BDDs.
Four Lectures on Model Checking Tom Henzinger University of California, Berkeley.
Software Verification 2 Automated Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität and Fraunhofer Institut für.
Daniel Kroening and Ofer Strichman 1 Decision Procedures An Algorithmic Point of View BDDs.
- 1 -  P. Marwedel, Univ. Dortmund, Informatik 12, 05/06 Universität Dortmund Validation - Formal verification -
Software Verification 1 Deductive Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer Institut.
Binary decision diagrams (BDD’s) Compact representation of a logic function ROBDD’s (reduced ordered BDD’s) are a canonical representation: equivalence.
1 CSEP590 – Model Checking and Automated Verification Lecture outline for July 9, 2003.
Software Verification 1 Deductive Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer.
Variants of LTL Query Checking Hana ChocklerArie Gurfinkel Ofer Strichman IBM Research SEI Technion Technion - Israel Institute of Technology.
Bounded Model Checking A. Biere, A. Cimatti, E. Clarke, Y. Zhu, Symbolic Model Checking without BDDs, TACAS’99 Presented by Daniel Choi Provable Software.
Software Verification 2 Automated Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität and Fraunhofer Institut für.
Software Verification 2 Automated Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität and Fraunhofer Institut für.
Binary Decision Diagrams Prof. Shobha Vasudevan ECE, UIUC ECE 462.
Software Verification 1 Deductive Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer Institut.
Software Verification 1 Deductive Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer.
Complexity Relief Techniques for Model Checking METU, Aug SOFTWARE VERIFICATION WORKSHOP Hüsnü Yenigün Sabanci University Informatics Institute,
How CTL model checking works
Basic concepts of Model Checking
SS 2017 Software Verification Bounded Model Checking, Outlook
Prof. Dr. Holger Schlingloff 1,2 Dr. Esteban Pavese 1
Planning as model checking, (OBDDs)
Software Verification 2 Automated Verification
SS 2017 Software Verification LTL monitoring
SS 2017 Software Verification Software Model Checking 2 - Parallelism
SS 2018 Software Verification LTL Satisfiability applied
SS 2017 Software Verification CTL model checking, BDDs
SS 2017 Software Verification Tableaus, CTL model checking
Software Verification 2 Automated Verification
Software Verification 2 Automated Verification
Binary Decision Diagrams
Software Verification 2 Automated Verification
CSCI1600: Embedded and Real Time Software
Program correctness Model-checking CTL
Presentation transcript:

Software Verification 2 Automated Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität and Fraunhofer Institut für Rechnerarchitektur und Softwaretechnik

Slide 2 H. Schlingloff, SS2012: SWV 2 LTL Model Checking Algorithm

Slide 3 H. Schlingloff, SS2012: SWV 2 Improvements bitstate hashing incomplete hashing partial order techniques

Slide 4 H. Schlingloff, SS2012: SWV 2 CTL model checking For each LTS/model there is exactly one computation tree  CTL model checking works directly on the model (no need to extract computation sequences) For all subformulas of a formula and all states of a given model, mark whether the state satisfies the subformula  iteration on formulas according to their inductive definition  if p is an atomic proposition, then p M = I(p)   M ={}  (φ  ψ) M = (M-φ M +ψ M )  (EXφ) M = {w |  w‘ (wRw‘  w‘  φ M )}  E(φU + ψ) M = {w | there is a path α from w and a w‘ on α such that (w<w‘  w‘  ψ M )  w‘‘ (w<w‘‘<w‘  w‘‘  φ M )}  A(φU + ψ) M = {w | for all paths α from w there is a w‘ on α such that (w<w‘  w‘  ψ M )  w‘‘ (w<w‘‘<w‘  w‘‘  φ M )}

Slide 5 H. Schlingloff, SS2012: SWV 2 Actual Calculation How to calculate (EX ψ) M from ψ M ?  Inverse image construction How to calculate E(φU + ψ) M or A(φU + ψ) M from φ M and ψ M ?

Slide 6 H. Schlingloff, SS2012: SWV

Slide 7 H. Schlingloff, SS2012: SWV 2 Inverse reachability calculation

Slide 8 H. Schlingloff, SS2012: SWV 2 Symbolic Representation Modelchecking algorithm deals with sets of states and with relations (sets of pairs of states) Need an efficient representation

Slide 9 H. Schlingloff, SS2012: SWV Binary Encoding of Domains Any variable on a finite domain D can be replaced by log(D) binary variables  similar to encoding of data types by compilers  e.g. var v: {0..15} can be replaced by var v1,v2,v3,v4: boolean (0=0000, 1= 0001, 2=0010, 3=0011,..., 15=1111) State space  still in the order of original domain!  e.g. three int8-variables can have 2 24 =10 8 states  e.g. array of length 10 with 10-bit values  states Representation of large sets of states?

Slide 10 H. Schlingloff, SS2012: SWV Representation of Sets

Slide 11 H. Schlingloff, SS2012: SWV Ordered Tree Form Normal form for propositional formulas Uses only the connective Ite Linear ordering on the set of propositions  e.g., most significant bit first Shannon expansion

Slide 12 H. Schlingloff, SS2012: SWV Truth table and tree form formula Reduction: Replace Ite (v,ψ,ψ) by ψ

Slide 13 H. Schlingloff, SS2012: SWV Abbreviations Introduce abbreviations maximally abbreviated

Slide 14 H. Schlingloff, SS2012: SWV Binary Decision Trees (BDTs) Binary decision tree Elimination of isomorphic subtrees (abbreviations)

Slide 15 H. Schlingloff, SS2012: SWV Binary Decision Diagrams (BDDs) Elimination of redundant nodes (redundant subformulas) Ite (v,ψ,ψ) by ψ

Slide 16 H. Schlingloff, SS2012: SWV Calculation of BDDs