Chebyshev polynomial expansion (2015)

Slides:



Advertisements
Similar presentations
I.L. Aleiner ( Columbia U, NYC, USA ) B.L. Altshuler ( Columbia U, NYC, USA ) K.B. Efetov ( Ruhr-Universitaet,Bochum, Germany) Localization and Critical.
Advertisements

Closed k-strings in 2+1 dimensional SU(N c ) gauge theories Andreas Athenodorou St. John’s College University of Oxford GradCATS 2008 Mostly based on:
Quasiparticle Scattering in 2-D Helical Liquid arXiv: X. Zhou, C. Fang, W.-F. Tsai, J. P. Hu.
Distance Preserving Embeddings of Low-Dimensional Manifolds Nakul Verma UC San Diego.
Lecture 15 Orthogonal Functions Fourier Series. LGA mean daily temperature time series is there a global warming signal?
Olivier Duchenne , Armand Joulin , Jean Ponce Willow Lab , ICCV2011.
Graphene: why πα? Louis Kang & Jihoon Kim
Disorder and chaos in quantum system: Anderson localization and its generalization (6 lectures) Boris Altshuler (Columbia) Igor Aleiner (Columbia)
Markus Büttiker University of Geneva The Capri Spring School on Transport in Nanostructures April 3-7, 2006 Scattering Theory of Conductance and Shot Noise.
Finite size effects in BCS: theory and experiments Antonio M. García-García Princeton and IST(Lisbon) Phys. Rev. Lett. 100, (2008)
1 Section 2 SECTION 2 Partial Fractions. 2 We need to split the following into separate terms: Roots of the denominator D(s): Case I – unrepeated factor.
Superbosonization for quantum billiards and random matrices. V.R. Kogan, G. Schwiete, K. Takahashi, J. Bunder, V.E. Kravtsov, O.M. Yevtushenko, M.R. Zirnbauer.
Anderson localization in BECs
Quantum Phase Transition in Ultracold bosonic atoms Bhanu Pratap Das Indian Institute of Astrophysics Bangalore.
Numerical study on ESR of V15 IIS, U. Tokyo, Manabu Machida RIKEN, Toshiaki Iitaka Dept. of Phys., Seiji Miyashita June 27- July 1, 2005 Trieste, Italy.
Lattice regularized diffusion Monte Carlo
2003/04/23 Chapter 3 1頁1頁 3.6 Expected Value of Random Variables.
I.1 ii.2 iii.3 iv.4 1+1=. i.1 ii.2 iii.3 iv.4 1+1=
P461 - Conductors1 Properties of Energy Bands Band width, gaps, density of states depend on the properties of the lattice (spacing, structure) First approximation.
I.1 ii.2 iii.3 iv.4 1+1=. i.1 ii.2 iii.3 iv.4 1+1=
Quasiparticle scattering and local density of states in graphene Cristina Bena (SPhT, CEA-Saclay) with Steve Kivelson (Stanford) C. Bena et S. Kivelson,
ESR Intensity and Anisotropy of Nanoscale Molecular Magnet V15 IIS, U. Tokyo, Manabu Machida RIKEN, Toshiaki Iitaka Dept. of Phys., Seiji Miyashita Fa3-4.
Matrix Algebra HGEN619 class Heuristic You already know a lot of it Economical and aesthetic Great for statistics.
Linear Algebra and Image Processing
Superglasses and the nature of disorder-induced SI transition
Eigenvalue Problems Solving linear systems Ax = b is one part of numerical linear algebra, and involves manipulating the rows of a matrix. The second main.
8.1 Vector spaces A set of vector is said to form a linear vector space V Chapter 8 Matrices and vector spaces.
System and definitions In harmonic trap (ideal): er.
III. Multi-Dimensional Random Variables and Application in Vector Quantization.
Monday, Apr. 2, 2007PHYS 5326, Spring 2007 Jae Yu 1 PHYS 5326 – Lecture #12, 13, 14 Monday, Apr. 2, 2007 Dr. Jae Yu 1.Local Gauge Invariance 2.U(1) Gauge.
Computational Solid State Physics 計算物性学特論 第8回 8. Many-body effect II: Quantum Monte Carlo method.
Solution of Faddeev Integral Equations in Configuration Space Walter Gloeckle, Ruhr Universitat Bochum George Rawitscher, University of Connecticut Fb-18,
Electronic Conduction of Mesoscopic Systems and Resonant States Naomichi Hatano Institute of Industrial Science, Unviersity of Tokyo Collaborators: Akinori.
1 Worm Algorithms Jian-Sheng Wang National University of Singapore.
Thermodynamics and Z(N) interfaces in large N matrix model RIKEN BNL Shu Lin SL, R. Pisarski and V. Skokov, arXiv: arXiv: YITP, Kyoto.
Petra Zdanska, IOCB June 2004 – Feb 2006 Resonances and background scattering in gedanken experiment with varying projectile flux.
Lanczos approach using out-of-core memory for eigenvalues and diagonal of inverse problems Pierre Carrier, Yousef Saad, James Freericks, Ehsan Khatami,
Long Range Spatial Correlations in One- Dimensional Anderson Models Greg M. Petersen Nancy Sandler Ohio University Department of Physics and Astronomy.
QUANTUM CHAOS IN GRAPHENE Spiros Evangelou is it the same as for any other 2D lattice? 1.
Electronic excitation energy transfer A Förster energy transfer demonstration experiment 4.

Electrostatics #5 Capacitance. Capacitance I. Define capacitance and a capacitor: Capacitance is defined as the ability of an object to store charge.
Characteristic vibrations of the field. LL2 section 52.
III. Multi-Dimensional Random Variables and Application in Vector Quantization.
Chapter 4 Euclidean n-Space Linear Transformations from to Properties of Linear Transformations to Linear Transformations and Polynomials.
4.8 “The Quadratic Formula” Steps: 1.Get the equation in the correct form. 2.Identify a, b, & c. 3.Plug numbers into the formula. 4.Solve, then simplify.
6.4 Random Fields on Graphs 6.5 Random Fields Models In “Adaptive Cooperative Systems” Summarized by Ho-Sik Seok.
Coupling quantum dots to leads:Universality and QPT
Physics 451 Quantum mechanics I Fall 2012 Oct 5, 2012 Karine Chesnel.
Thurs 12/3 Lesson 5 – 5 Learning Objective: To write equations given roots Hw: Pg. 315#23 – 29 odd, 37 – 41 odd, 42, 45.
1 ME 381R Lecture 13: Semiconductors Dr. Li Shi Department of Mechanical Engineering The University of Texas at Austin Austin, TX
Quantization of free scalar fields scalar field  equation of motin Lagrangian density  (i) Lorentzian invariance (ii) invariance under  →  require.
SATMathVideos.Net A) only I B) only II C) II and III D) I, II and III If two sides of a triangle have sides of lengths 4 and 7, the third leg of the triangle.
Matrices. Matrix - a rectangular array of variables or constants in horizontal rows and vertical columns enclosed in brackets. Element - each value in.
Lattice gauge theory treatment of Dirac semimetals at strong coupling Yasufumi Araki 1,2 1 Institute for Materials Research, Tohoku Univ. 2 Frontier Research.
Презентацию подготовила Хайруллина Ч.А. Муслюмовская гимназия Подготовка к части С ЕГЭ.
Wave Interactions.
Roots & Zeros of Polynomials part 1
Non-Hermitian quantum mechanics and localization
Matrix Algebra HGEN619 class 2006.
Matrices and vector spaces
Common features of glassy models
10.6. Cluster Expansion for a Quantum Mechanical System
Dejun Yang (Arizona State University)
Mixed order phase transitions
AC Transformers Source: OSHA.
Matrices.
Example Make x the subject of the formula
M. Sasaki, K. Hukushima, H. Yoshino, H. Takayama
On Solving Linear Systems in Sublinear Time
Presentation transcript:

Collaborators: David R. Nelson, Ariel Amir Two methods of numerically computing the inverse localization length in one dimension Naomichi Hatano University of Tokyo Collaborators: David R. Nelson, Ariel Amir

Chebyshev polynomial expansion (2015) Non-Hermitian Anderson model (1996)

Anderson Localization

Anderson Localization

In Three Dimensions density of states localized extended energy Fermi energy Fermi energy mobility edge

In One Dimension Destructive interference

In One Dimension κ : inverse localization length Almost all states are localized. κ : inverse localization length

Inverse Localization Length higher energy → long localization length → small κ lower energy → short localization length → large κ κ : inverse localization length

1d tight-binding model −3 −2 −1 1 2 3 hopping random potential

1d tight-binding model

Transfer-matrix method

Non-Hermitian Anderson model (1996) 1d tight-binding model Non-Hermitian Anderson model (1996)

Non-Hermitian Anderson model N. Hatano and D.R. Nelson, PRL 77 (96) 570; PRB 56 (97) 8651 −3 −2 −1 1 2 3

Non-Hermitian Anderson model N. Hatano and D.R. Nelson, PRL 77 (96) 570; PRB 56 (97) 8651

Non-Hermitian Anderson model N. Hatano and D.R. Nelson, PRL 77 (96) 570; PRB 56 (97) 8651 1000 sites, periodic boundary condition

Imaginary Vector Potential N. Hatano and D.R. Nelson, PRL 77 (96) 570; PRB 56 (97) 8651 imaginary vector potential vector potential

N. Hatano and D.R. Nelson, PRL 77 (96) 570; PRB 56 (97) 8651 Gauge Transformation N. Hatano and D.R. Nelson, PRL 77 (96) 570; PRB 56 (97) 8651 Gauge Transformation

Imaginary Gauge Transformation N. Hatano and D.R. Nelson, PRL 77 (96) 570; PRB 56 (97) 8651 Imaginary Gauge Transformation

Non-Hermitian Anderson model N. Hatano and D.R. Nelson, PRL 77 (96) 570; PRB 56 (97) 8651 1000 sites, periodic boundary condition

Imaginary Gauge Transformation N. Hatano and D.R. Nelson, PRL 77 (96) 570; PRB 56 (97) 8651

1d tight-binding model

Non-Hermitian Anderson model N. Hatano and D.R. Nelson, PRL 77 (96) 570; PRB 56 (97) 8651 1000 sites, periodic boundary condition

Non-Hermitian Anderson model (1996) 1000 sites 1 sample

Random-hopping model

Imaginary Gauge Transformation N. Hatano and D.R. Nelson, PRL 77 (96) 570; PRB 56 (97) 8651 periodic boundary condition

Non-Hermitian Anderson model N. Hatano and D.R. Nelson, PRL 77 (96) 570; PRB 56 (97) 8651

1000 sites 1 sample Chebyshev polynomial expansion (2015) Non-Hermitian Anderson model (1996) 1000 sites 1 sample

Chebyshev Polynomial Expansion of the density of states R.N. Silver and H. Röder (1994) N×N Hermitian matrix: H : Chebyshev polynomial

Chebyshev Polynomial Expansion of the density of states R.N. Silver and H. Röder (1994)

Chebyshev Polynomial Expansion of the density of states R.N. Silver and H. Röder (1994) Recursive Relation

Chebyshev Polynomial Expansion of the density of states R.N. Silver and H. Röder (1994) (i) (ii) cutoff (iii)

Chebyshev Polynomial Expansion of the density of states 1000 sites 1 sample up to 1000th order

Thouless Formula D.J. Thouless, J. Phys. C 5 (1972) 77

Chebyshev Polynomial Expansion of the inverse localization length N. Hatano (2015) (n ≥ 1)

Chebyshev Polynomial Expansion of the inverse localization length N. Hatano (2015) (i) (ii) cutoff (iii)

Chebyshev Polynomial Expansion of the inverse localization length N. Hatano (2015) Chebyshev polynomial expansion (2015) 1000 sites 1 sample up to 1000th order Non-Hermitian Anderson model (1996)

J. Feinberg and A. Zee, PRE 59 (1999) 6433 Random Sign Model J. Feinberg and A. Zee, PRE 59 (1999) 6433 −3 −2 −1 1 2 3

Random Sign Model E 10000 sites 1 sample MOTHRA: https://en.wikipedia.org/wiki/Mothra Random Sign Model J. Feinberg and A. Zee, PRE 59 (1999) 6433 E 10000 sites 1 sample

A. Amir, N. Hatano and D.R. Nelson, work in progress Random Sign Model A. Amir, N. Hatano and D.R. Nelson, work in progress −3 −2 −1 1 2 3

A. Amir, N. Hatano and D.R. Nelson, work in progress Random Sign Model A. Amir, N. Hatano and D.R. Nelson, work in progress E κ = 0.1 g=0.0 10000 sites 1 sample g=0.1 10000 sites 1 sample