Total Ionizing Dose Effects in 130-nm Commercial CMOS Technologies for HEP experiments L. Gonella, M. Silvestri, S. Gerardin on behalf of the DACEL – CERN.

Slides:



Advertisements
Similar presentations
MURI Device-level Radiation Effects Modeling Hugh Barnaby, Jie Chen, Ivan Sanchez Department of Electrical Engineering Ira A. Fulton School of Engineering.
Advertisements

(Neil weste p: ).  A MOS transistor is a majority-carrier device, in which the current in a conducting channel between the source and the drain.
From DACEL to DACEL 2: present and Dip. Fisica & DEI – Università di Padova D. Bisello.
© Estoril – 19 September 2003 Advanced Compact Modeling Workshop MOSFETs Flicker Noise Modeling For Circuit Simulation Montpellier University A. Laigle,
© Digital Integrated Circuits 2nd Devices Digital Integrated Circuits A Design Perspective The Devices Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic.
MDT-ASD PRR C. Posch30-Aug-01 1 Radiation Hardness Assurance   Total Ionizing Dose (TID) Change of device (transistor) properties, permanent   Single.
Digital Integrated Circuits A Design Perspective
Reading: Finish Chapter 6
1 Lecture 4: Transistor Summary/Inverter Analysis Subthreshold MOSFET currents IEEE Spectrum, 7/99, p. 26.
Dr. Nasim Zafar Electronics 1 - EEE 231 Fall Semester – 2012 COMSATS Institute of Information Technology Virtual campus Islamabad.
© Digital Integrated Circuits 2nd Devices VLSI Devices  Intuitive understanding of device operation  Fundamental analytic models  Manual Models  Spice.
Optional Reading: Pierret 4; Hu 3
Technologies for a DC-DC ASIC B.Allongue 1, G.Blanchot 1, F.Faccio 1, C.Fuentes 1,2, S.Michelis 1, S.Orlandi 1 1 CERN – PH-ESE 2 UTFSM, Valparaiso, Chile.
A radiation-tolerant LDO voltage regulator for HEP applications F.Faccio, P.Moreira, A.Marchioro, S.Velitchko CERN.
ECE 342 Electronic Circuits 2. MOS Transistors
2005 MAPLD, Paper 240 JJ Wang 1 Total Ionizing Dose Effect on Programmable Input Configurations J. J. Wang, R. Chan, G. Kuganesan, N. Charest, B. Cronquist.
MURI Total Ionizing Dose Effects in Bulk Technologies and Devices Hugh Barnaby, Jie Chen, Ivan Sanchez Department of Electrical Engineering Ira A. Fulton.
© Digital Integrated Circuits 2nd Devices Digital Integrated Circuits A Design Perspective The Devices Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic.
The Devices Digital Integrated Circuit Design Andrea Bonfanti DEIB
© Digital Integrated Circuits 2nd Devices Digital Integrated Circuits A Design Perspective The Devices Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic.
Norhayati Soin 06 KEEE 4426 WEEK 7/1 6/02/2006 CHAPTER 2 WEEK 7 CHAPTER 2 MOSFETS I-V CHARACTERISTICS CHAPTER 2.
CMOS technologies in the 100 nm range for rad-hard front-end electronics in future collider experiments V. Re a,c, L. Gaioni b,c, M. Manghisoni a,c, L.
Total Dose Effects on Devices and Circuits - Principles and Limits of Ground Evaluation-
Pierpaolo Valerio.  CLICpix is a hybrid pixel detector to be used as the CLIC vertex detector  Main features: ◦ small pixel pitch (25 μm), ◦ Simultaneous.
Detectors and electronics for Super-LHC: IRRADIATION RESULTS Andrea Candelori INFN Sezione di Padova.
1 Radiation tolerance of commercial 130nm CMOS technologies for High Energy Physics Experiments Federico Faccio for the CERN(PH/MIC)-DACEL * collaboration.
ECE 875: Electronic Devices Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University
EXAMPLE 6.1 OBJECTIVE Fp = 0.288 V
Università degli Studi di Pavia and INFN Pavia
ECFA ILC Workshop, November 2005, ViennaLadislav Andricek, MPI für Physik, HLL DEPFET Project Status - in Summary Technology development thinning technology.
Process Monitor/TID Characterization Valencia M. Joyner.
Circuit design with a commercial 0.13  m CMOS technology for high energy physics applications K. Hänsler, S. Bonacini, P. Moreira CERN, EP/MIC.
Numerical Boltzmann/Spherical Harmonic Device CAD Overview and Goals Overview: Further develop and apply the Numerical Boltzmann/Spherical Harmonic method.
Comparative Analysis of the RF and Noise Performance of Bulk and Single-Gate Ultra-thin SOI MOSFETs by Numerical Simulation M.Alessandrini, S.Eminente,
ECE340 ELECTRONICS I MOSFET TRANSISTORS AND AMPLIFIERS.
Robert Szczygieł IFJ PANSPIE 2005 Radiation hardness of the mixed-mode ASIC’s dedicated for the future high energy physics experiments Introduction Radiation.
Vanderbilt MURI meeting, June 14 th &15 th 2007 Band-To-Band Tunneling (BBT) Induced Leakage Current Enhancement in Irradiated Fully Depleted SOI Devices.
ECE442: Digital ElectronicsCSUN, Spring-2010-Zahid MOS Transistor ECE442: Digital Electronics.
EE141 © Digital Integrated Circuits 2nd Devices 1 Lecture 5. CMOS Device (cont.) ECE 407/507.
Valerio Re, Massimo Manghisoni Università di Bergamo and INFN, Pavia, Italy Jim Hoff, Abderrezak Mekkaoui, Raymond Yarema Fermi National Accelerator Laboratory.
The development of the readout ASIC for the pair-monitor with SOI technology ~irradiation test~ Yutaro Sato Tohoku Univ. 29 th Mar  Introduction.
INFN and University of Perugia Characterization of radiation damage effects in silicon detectors at High Fluence HL-LHC D. Passeri (1,2), F. Moscatelli.
Integrated Circuit Devices Professor Ali Javey Summer 2009 MOSFETs Reading: Chapters 17 & 18.
Design and Assessment of a Robust Voltage Amplifier with 2.5 GHz GBW and >100 kGy Total Dose Tolerance Jens Verbeeck TWEPP 2010.
10 CBM Collaboration Meeting 2007 Sept Moscow Engineering Physics Institute (State University) Status of Radiation Tolerant Blocks for STS A.
The MOS Transistor Polysilicon Aluminum. The NMOS Transistor Cross Section n areas have been doped with donor ions (arsenic) of concentration N D - electrons.
Characterization of irradiated MOS-C with X-rays using CV-measurements and gated diode techniques Q. Wei, L. Andricek, H-G. Moser, R. H. Richter, Max-Planck-Institute.
Test structures for the evaluation of TowerJazz 180 nm CMOS Imaging Sensor technology  ALICE ITS microelectronics team - CERN.
EE141 © Digital Integrated Circuits 2nd Devices 1 Digital Integrated Circuits A Design Perspective The Devices Jan M. Rabaey Anantha Chandrakasan Borivoje.
Ulrich Abelein, Mathias Born, Markus Schindler, Andreas Assmuth, Peter Iskra, Torsten Sulima, Ignaz Eisele Doping Profile Dependence of the Vertical Impact.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 11: September 22, 2014 MOS Transistor.
UTB SOI for LER/RDF EECS Min Hee Cho. Outline  Introduction  LER (Line Edge Roughness)  RDF (Random Dopant Fluctuation)  Variation  Solution – UTB.
June 13, MURI Annual Review X. J. Zhou, et al 1 Effects of Switched-Bias Annealing on Charge Trapping in HfO 2 high-  Gate Dielectrics X. J.
Federico Faccio CERN/PH-MIC
Esperimento APOLLO Sezione di Roma Sezione di Roma Università degli studi di Cassino e del Lazio meridionale 1 ENEA centro ricerche «Casaccia» 2 Sezione.
L. Ratti a,b, M. Dellagiovanna a, L. Gaioni a,b, M. Manghisoni b,c, V. Re b,c, G. Traversi b,c, S. Bettarini d,e, F. Morsani e, G. Rizzo d,e a Università.
ECE 333 Linear Electronics
Damu, 2008EGE535 Fall 08, Lecture 21 EGE535 Low Power VLSI Design Lecture #2 MOSFET Basics.
Irradiation results of technologies for a custom DC-DC converter F.Faccio, G.Blanchot, S.Michelis, C.Fuentes, B.Allongue, S.Orlandi CERN – PH-ESE.
V. Re – 11 th Pisa Meeting on Advanced Detectors, Isola d’Elba, May 24 – 30, Forecasting noise and radiation hardness of CMOS front-end electronics.
Analog Integrated Circuits Lecture 1: Introduction and MOS Physics ELC 601 – Fall 2013 Dr. Ahmed Nader Dr. Mohamed M. Aboudina
Radiation Damage Tests at 1GRad Dose on 65nm CMOS transistors
M. Manghisoni, L. Ratti, V. Re, V. Speziali, G. Traversi
Ciao Noise measurements on 65 nm CMOS transistors at very high total ionizing dose V. Rea,c, L. Gaionia,c, L. Rattib,c, E. Riceputia,c, M. Manghisonia,c,
Radiation Tolerance of a 0.18 mm CMOS Process
INFN Pavia / University of Bergamo
Kai Nia, Enxia Zhanga, Ronald D. Schrimpfa,
EE141 Chapter 3 VLSI Design The Devices March 28, 2003.
aUniversità degli Studi di Pavia Dipartimento di Elettronica
Copyright © 2004 The McGraw-Hill Companies, Inc. All rights reserved.
Presentation transcript:

Total Ionizing Dose Effects in 130-nm Commercial CMOS Technologies for HEP experiments L. Gonella, M. Silvestri, S. Gerardin on behalf of the DACEL – CERN collaboration

Perugia, 26/9/2006S. Gerardin Outline Introduction & DACEL Experimental and Devices TID irradiation (X-rays): –Core transistors: Worst-case bias conditions –NMOSFETs –PMOSFETs Impact of bias Different foundries –I/O transistors: Worst-case bias conditions –NMOSFETs –PMOSFETs Impact of bias and foundry Conclusions

Perugia, 26/9/2006S. Gerardin DACEL D esign A nd C haracterization of deep submicron EL ectronic devices for future particle detectors Born in 2004 Participating Institutions –INFN sections: Bari Bologna Firenze Padova Torino In collaboration with CERN-MIC group

Perugia, 26/9/2006S. Gerardin Introduction Super LHC radiation environment –Expected up to 100 Mrad in 10 years’ time Purpose of this work: –Assess the suitability of commercial deep-submicron/ decananometer CMOS technologies for use in future HEP experiments

Perugia, 26/9/2006S. Gerardin Devices MOSFETs manufactured in commercial 130-nm CMOS technologies: –Core transistors: t ox =2.2nm Different aspect ratio (W\L) Enclosed Layout Transistors (ELT) –I/O transistors: t ox = 5.2nm Different aspect ratio Enclosed Layout Transistors (ELT) Three different suppliers called in the following: A, B, and C

Perugia, 26/9/2006S. Gerardin Experimental CERN X-ray probe station –X SEIFERT RP KV maximum voltage, tungsten target –Dose rate: ~ 25 krad/s –HP4145B parameter analyzer –Thermal chuck (+5°C to +200°C) –Custom probe card –Switching matrix –LabVIEW software –Fully automated!

Perugia, 26/9/2006S. Gerardin Core Transistors: Worst Case Bias Conditions

Perugia, 26/9/2006S. Gerardin Minimum Size NMOSFETs Increase in off-current (I leak ) up to 3 orders of magnitude Large negative shift in the V th TID rebound in V th and I leak degradation Supplier A Core NMOSFET (linear) W/L= 0.16/0.12µm Source Drain Gate

Perugia, 26/9/2006S. Gerardin Large-width NMOSFETs Increase in off-current (Ileak) No shift in the threshold voltage TID rebound in the I leak degradation between 5 and 27 Mrad Supplier A Core NMOSFET (linear) W/L= 2/0.12µm

Perugia, 26/9/2006S. Gerardin Enclosed Layout NMOSFETs Negligible TID effects on Enclosed Layout Transistors Very hard gate oxide! (up to 190 Mrad) Supplier A Core ELT NMOSFET (enclosed) W min, L=0.12µm Source Drain Gate

Perugia, 26/9/2006S. Gerardin NMOSFETs:  V th vs dose Negligible TID effects in large-width and enclosed layout NMOSFETs Up to -150mV shift in minimum size NMOSFETs (0.16/0.12  m) TID rebound in the V th between 1 and 10Mrad Supplier A Linear Core NMOSFETs

Perugia, 26/9/2006S. Gerardin NMOSFETs: I leak vs dose No change in ELTs Up to 3 orders of magnitude increase for all W/L (non-ELT) TID rebound in the degradation between 1 and 10 Mrad Supplier A Core NMOSFETs

Perugia, 26/9/2006S. Gerardin Minimum Size PMOSFETs Less severe degradation compared to NMOSFETs Negative V th shift Negligible changes in I leak Supplier A Core PMOSFET W/L= 0.16/0.12µm V ds =1.5 V

Perugia, 26/9/2006S. Gerardin PMOSFETs:  V th vs dose Negligible effects in large-width and enclosed layout NMOSFETs Up to 50mV shift in minimum size MOSFETs (0.16/0.12  m) Supplier A Core PMOSFETs

Perugia, 26/9/2006S. Gerardin + STI: Achilles’ heel ELTs almost immune => Very hard gate oxide due to scaling Increase in I leak in Large-Width and Minimum-Size NMOSFETs => positive charge trapped in STI  V th larger in narrow channel transistors (Radiation Induced Narrow Channel Effect) TID rebound due to charge trapping/interface generation kinetics: maximum degradation between 1 and 10 Mrad W STI Parasitic Channels Main Channel poly gate positive trapped charge Interface states

Perugia, 26/9/2006S. Gerardin Core Transistors: Impact of Bias Conditions

Perugia, 26/9/2006S. Gerardin Bias Dependence:  V th Minimum-Size NMOSFETs Worst condition: – V gs = V dd –  V th,max =-150 mV Intermediate condition – V gs = V dd /2 –  V th.max =-120 mV Best condition – V gs = 0 V –  V th,max =-60mV Supplier A Core NMOSFETs W/L=0.16/0.12µm

Perugia, 26/9/2006S. Gerardin Bias Dependence: I leak Supplier A Core NMOSFETs W/L=0.16/0.12µm Minimum-Size NMOSFETs Worst condition: – V gs = V dd – I leak,max ↑ = 10 3 x Intermediate condition –V gs = V dd /2 – I leak,max ↑ = 10 2 x Best condition –V gs = 0 V –I leak,max ↑ = 10x

Perugia, 26/9/2006S. Gerardin Core Transistors: Different Foundries

Perugia, 26/9/2006S. Gerardin Different foundries: NMOSFETs  V th Qualitatively, the same effects Quantitatively, softer and harder technologies TID rebound occurs at different total doses Maximum  V th in minimum size NMOSFETs from 50 mV to 150 mV Suppliers A,B,C Core NMOSFETs W/L=0.16/ µm

Perugia, 26/9/2006S. Gerardin Different foundries: NMOSFETs I leak Qualitatively, the same effects Quantitatively, softer and harder technologies TID rebound occurs at different total doses Maximum I leak in minimum size NMOSFETs from 10x to 10 4 x Suppliers A,B,C Core NMOSFETs W/L=0.16/ µm

Perugia, 26/9/2006S. Gerardin I/O Transistors: Worst Case Bias Conditions

Perugia, 26/9/2006S. Gerardin Minimum Size NMOSFETs Supplier A I/O MOSFETs W/L= 0.36/0.24µm NMOSFET PMOSFET More severe degradation compared to core devices for NMOSFETs and PMOSFETs in terms of  V th and I leak  V th and I leak in NMOSFETs  V th in PMOSFETs

Perugia, 26/9/2006S. Gerardin Enclosed Layout ELTs degrade as well Gate oxide still an issue Increase in subthreshold swing: interface traps Supplier A I/O ELT NMOSFET W min, L=0.12µm

Perugia, 26/9/2006S. Gerardin NMOSFETs:  V th vs dose Supplier A I/O NMOSFETs  V th up to -400 mV in minimum-size devices TID rebound in narrow devices Monotonic increase in large-width and ELTs

Perugia, 26/9/2006S. Gerardin NMOSFETs:  I leak vs dose No change in ELTs Up to 5 orders of magnitude increase for all W/L (non-ELTs) TID rebound in the degradation between 1 and 10Mrad Supplier A I/O NMOSFETs

Perugia, 26/9/2006S. Gerardin PMOSFETs:  V th vs dose  V th up to 350 mV in minimum-size devices Smaller dependence on geometry than NMOSFETs Monotonic increase Supplier A I/O PMOSFETs

Perugia, 26/9/2006S. Gerardin Impact of Bias and Foundry Bias: dependence similar to that of core transistors –  V th.max (MS NMOSFETs) from -50 mV to -250 mV –I leak,max (NMOSFETs) ↑ from 10x to 10 5 x Foundry: variability similar to that of core transistors –  V th,max (NMOSFETs) from -400 mV to -60 mV –I leak,max (NMOSFETs) ↑ from 10 2 x to 10 8 x

Perugia, 26/9/2006S. Gerardin Conclusions TID effects on Core Transistors –Narrow and short devices most affected –Very hard gate oxide, less hard STI –Large impact of bias conditions during operation –Large foundry to foundry variability TID effects on I/O Transistors –Same effects as on Core Transistors + gate oxide still an issue 130-nm CMOS is harder than older technologies, and may be up to the challenge of future HEP experiments even without ELTs, but, in this case, needs constant monitoring due to variability from foundry to foundry

Perugia, 26/9/2006S. Gerardin Open Issues Batch to batch variability (encouraging preliminary results) Annealing and dose rate vs rebound Effects of different radiation sources (protons) Impact on flicker noise Long-term effects on the gate oxide reliability