Evaluation of Silicon Photomultiplier Arrays for the GlueX Barrel Calorimeter Carl Zorn Radiation Detector & Medical Imaging Group Jefferson Laboratory,

Slides:



Advertisements
Similar presentations
Sci-Fi tracker for IT replacement 1 Lausanne 9. December 2010.
Advertisements

The Multi-Pixel Photon Counter for the GLD Calorimeter Readout Jul Satoru Uozumi University of Tsukuba, Japan 1.Introduction 2.Recent.
Study of the MPPC Performance - contents - Introduction Fundamental properties microscopic laser scan –check variation within a sensor Summary and plans.
Time-of-Flight at CDF Matthew Jones August 19, 2004.
Microscope Performance at elevated dark rates Richard Jones University of Connecticut collaboration GlueX collaboration meeting, Newport News, Feb. 2-4,
Tagger Electronics Part 1: tagger focal plane microscope Part 2: tagger fixed array Part 3: trigger and digitization Richard Jones, University of Connecticut.
Silicon Photomultiplier Readout Electronics for the GlueX Tagger Microscope Hall D Electronics Meeting, Newport News, Oct , 2007 Richard Jones, Igor.
The Tagger Microscope Richard Jones, University of Connecticut Hall D Tagger - Photon Beamline ReviewJan , 2005, Newport News presented by GlueX.
N. Anfimov (JINR) on behalf of the ECAL0 team.  Introduction  Installation and commissioning  Calibration  Data taking  Preliminary result  Plans.
Photon detection Visible or near-visible wavelengths
Characterization of Silicon Photomultipliers for beam loss monitors Lee Liverpool University weekly meeting.
BCAL R&D GlueX Collaboration Meeting Newport News, Virginia September 9-11, 2004 George Lolos, Zisis Papandreou.
Selection of Silicon Photomultipliers for ILC Analogue Hadron Calorimeter Prototype Lay-out * ILC Hadron Calorimeter prototype with SiPM readout * Selection.
Fast Detectors for Medical and Particle Physics Applications Wilfried Vogel Hamamatsu Photonics France March 8, 2007.
PANDA electromagnetic calorimeters Pavel Semenov IHEP, Protvino on behalf of the IHEP PANDA group INSTR08 28 Feb - 05 Mar 2008.
MPPC Radiation Hardness (gamma-ray & neutron) Satoru Uozumi, Kobe University for Toshinori Ikuno, Hideki Yamazaki, and all the ScECAL group Knowing radiation.
Update on Silicon Photomultipliers Yi Qiang (Hall-D) Jefferson Lab S&T Review May 10, 2011.
Detector development and physics studies in high energy physics experiments Shashikant Dugad Department of High Energy Physics Review, 3-9 Jan 2008.
SiPM: Development and Applications
R&D on W-SciFi Calorimeters for EIC at Brookhaven E.Kistenev, S.Stoll, A.Sukhanov, C.Woody PHENIX Group E.Aschenauer and S.Fazio Spin and EIC Group Physics.
The MPPC Study for the GLD Calorimeter Readout Introduction Measurement of basic characteristics –Gain, Noise Rate, Cross-talk Measurement of uniformity.
Light Calibration System (LCS) Temperature & Voltage Dependence Option 2: Optical system Option 2: LED driver Calibration of the Hadronic Calorimeter Prototype.
The CMS Electromagnetic Calorimeter Roger Rusack The University of Minnesota On behalf of the CMS ECAL collaboration.
R&D of MPPC for T2K experiment PD07 : Photosensor Workshop /6/28 (Thu) S.Gomi T.Nakaya M.Yokoyama H.Kawamuko ( Kyoto University ) T.Nakadaira.
Study of the MPPC performance - R&D status for the GLD calorimeter readout – Nov 6-10.
Study of the Multi-Pixel Photon Counter for ILC calorimeter Satoru Uozumi (Kobe University) Atami Introduction of ILC and MPPC The MPPC performance.
1 SiPM Gain Test SiPM Multiple APD pixels operating at Geiger mode. Output is the sum of the outputs from all APD pixels. Advantages Compact size High.
Study of the MPPC for the GLD Calorimeter readout Satoru Uozumi (Shinshu University) for the GLD Calorimeter Group May 29 – Jun 4 DESY Introduction.
Proposal to Test Improved Radiation Tolerant Silicon Photomultipliers F. Barbosa, J. McKisson, J. McKisson, Y. Qiang, E. Smith, D. Weisenberger, C. Zorn.
Shashlyk FE-DAQ requirements Pavel Semenov IHEP, Protvino on behalf of the IHEP PANDA group PANDA FE-DAQ workshop, Bodenmais April 2009.
Study of the MPPC for the GLD Calorimeter readout Satoru Uozumi (Shinshu University) Feb Beijing Introduction Basic performances Future.
MPPC status M.Taguchi(kyoto) T2K ND /7/7.
Z. Papandreou & E. Smith GlueX Collaboration Meeting, Sep. 19/ BCAL Construction & Readout Update Contributions by: SiPMs: K. Janzen, A. Semenov,
Development of Multi-Pixel Photon Counters(MPPC) Makoto Taguchi Kyoto University.
Study of the MPPC for the GLD Calorimeter Readout Satoru Uozumi (Shinshu University) for the GLD Calorimeter Group (KNU, Kobe, Niigata, Shinshu, ICEPP.
Timing Studies of Hamamatsu MPPCs and MEPhI SiPM Samples Bob Wagner, Gary Drake, Patrick DeLurgio Argonne National Laboratory Qingguo Xie Department of.
FSC Status and Plans Pavel Semenov IHEP, Protvino on behalf of the IHEP PANDA group PANDA Russia workshop, ITEP 27 April 2010.
Multipixel Geiger mode photo-sensors (MRS APD’s) Yury Kudenko ISS meeting, KEK, 25 January 2006 INR, Moscow.
Prospects to Use Silicon Photomultipliers for the Astroparticle Physics Experiments EUSO and MAGIC A. Nepomuk Otte Max-Planck-Institut für Physik München.
The Electromagnetic Barrel Calorimeter for the GlueX Experiment CALOR 2006 Chicago, June Mauricio Barbi University of Regina Outline GlueX – The.
TIMING COUNTER: status report Giorgio CECCHET, PSI July 11th, 2003.
A.Olchevski, JINR (Dubna) Test Beam studiesof COMPASS ECAL0 Test Beam studies of COMPASS ECAL0 module prototype with MAPD readout ECAL0 Team, JINR, DUBNA.
Jet Energy Measurement at ILC Separation of jet particles in the calorimeter is required for the PFA  Fine granular calorimeter is necessary. Particle.
The Multi-Pixel Photon Counter for the GLD Calorimeter Readout Jul Satoru Uozumi University of Tsukuba, Japan for the GLD Calorimeter.
Study and Development of the Multi-Pixel Photon Counter for the GLD Calorimeter Satoru Uozumi (Shinshu, Japan) on behalf of the GLD Calorimeter Group Oct-9.
Super-IFR Detector R&D summary Wander Baldini Ferrara, Padova, Roma1 INFN and University on behalf of the superB-IFR group: Ferrara, Padova, Roma1 INFN.
Status of NEWCHOD E.Guschin (INR), S.Kholodenko (IHEP), Yu.Kudenko (INR), I.Mannelli (Pisa), O.Mineev (INR), V.Obraztsov (IHEP), V.Semenov(IHEP), V.Sugonyaev.
Upgrade of the MEG liquid xenon calorimeter with VUV-light sensitive large area SiPMs Kei Ieki for the MEG-II collaboration 1 II.
M.Teshima (MPP, U-Tokyo) M.Pimenta (LIP) T.Schweizer (MPP)
Silicon Photomultiplier Development at GRAPES-3 K.C.Ravindran T.I.F.R, OOTY WAPP 2010 Worshop On behalf of GRAPES-3 Collaboration.
Study of the MPPC for the GLD Calorimeter Readout Satoru Uozumi (Shinshu University) for the GLD Calorimeter Group Kobe Introduction Performance.
Development of Multi-pixel photon counters(2) M.Taguchi, T.Nakaya, M.Yokoyama, S.Gomi(kyoto) T.Nakadaira, K.Yoshimura(KEK) for KEKDTP photon sensor group.
M.Taguchi and T.Nobuhara(Kyoto) HPK MPPC(Multi Pixel Photon Counter) status T2K280m meeting.
Shashlyk DAQ and FEE Status and Plans Pavel Semenov IHEP, Protvino on behalf of the IHEP PANDA group PANDA DAQ and FEE Workshop, Rauischholzhausen Castle.
Performance of 1600-pixel MPPC for the GLD Calorimeter Readout Jan. 30(Tue.) Korea-Japan Joint Shinshu Univ. Takashi Maeda ( Univ. of Tsukuba)
IFR Detector R&D status
Prospect of SiPM application to TOF in PANDA
A. F. Yanin, I. M. Dzaparova, E. A. Gorbacheva, A. N. Kurenya, V. B
Performance of LYSO and CeBr3 crystals readout by SiPM
FSC status and plans Pavel Semenov IHEP, Protvino
Scintillation Detectors in High Energy Physics
Frontier Detectors for Frontier Physics
FINAL YEAR PROJECT 4SSCZ
IHEP group Shashlyk activity towards TDR
Characteristics of S12045(X) photon sensors for GlueX
X. Zhu1, 3, Z. Deng1, 3, A. Lan2, X. Sun2, Y. Liu1, 3, Y. Shao2
Comparison of CPTA and Hamamatsu SiPMs
SoLID EC photonsensor.
R&D of MPPC in kyoto M.taguchi.
The MPPC Study for the GLD Calorimeter Readout
Presentation transcript:

Evaluation of Silicon Photomultiplier Arrays for the GlueX Barrel Calorimeter Carl Zorn Radiation Detector & Medical Imaging Group Jefferson Laboratory, Newport News, VA 2009 NSS/MIC Symposium, Orlando, Fl Thursday, October 29, NSS/MIC Symposium, Orlando, Fl Thursday, October 29, 2009 On behalf of the GlueX Collaboration

Jefferson Laboratory Under construction 2 2

12 GeV upgrade – GlueX experiment Study excited gluonic meson states 3 3

Photodetectors in Strong Magnetic Field 2.2 Tesla SciFi●Lead Calorimeter 4 meter length 48 sectors 4 4

Chosen Photodetectors Silicon Photomultipliers (SiPMs) Two companies: Hamamatsu and SensL Arrays (4x4) of 3mm 2 cells Size ~ 13 x 13 mm 2 Gain > 10 6 Insensitive to B-fields Dark rate ~ 100 MHz Operation depends on temperature Hamamatsu H ” PMT: R Photocathode D = 27mm 19 stages Max. anode I = 10mA Gain ~ 3x10 6 (0.5 T) Dark rate ~ 0.5 kHz Fine Mesh PMTs (FM) SensL Hamamatsu 5 5

Readout Setups SiPM Option: –Inner: 6x4 SiPMs (2,304) –Outer: 2x2 FM PMTs (384)  FM PMT Option:  Inner: 3x3 FM PMTs  Outer: 2x2 FM PMTs (1,248) SiPMs: Sum in 3’s to electronics Option 1 Option 2 6 6

Readout Setups Full SiPM Option: –Inner: 6x4 SiPMs –Outer: 2x2x4 SiPMs (3,840) SiPMs: Sum in 3’s to electronics Option 3 7 7

Original Prototype Arrays Array Size: 13 x 13 mm 2 Active area: 2.85 x 2.85 x 16 mm 2 (75%) Cell: 3.15 x 3.15 mm 2 Pixel Count: 3640 x 16 (35 μm) Array Size: 16 x 18 mm 2 Active Area: 3x3x16 mm 2 (50%) Cell: 3.85 x 3.85 mm 2 Pixel Count: 3600 x 16 (50 μm) 16 mm 18 mm 13 mm SensL Hamamatsu 8 8

Sample Pulses 200 ns SensL Hamamatsu 9 9

Amplitude Distribution – SensL – Type 1 10

Amplitude Distribution – Hamamatsu 11

“Dead” channels Amplitude Distribution – SensL – Type 2 12

“Dead” channels Amplitude Distribution – SensL – Type 2 X 13

Effect of excessive bias in Hamamatsu MPPC 50 V op 50 V op v 14

Effect of Bias on Noise (SensL) Overbias = +2 v Overbias = +4 v 15

Temperature & Stability  Dark Rate dependent upon Overbias  Dark Rate decreases rapidly with decreasing Temperature  Dark Rate can be improved with Temperature Control  At Constant Overbias  Gain independent of Temperature Same goes for PDE  Gain varies rapidly with Overbias (1-4 volts)  Output Response strongly dependent upon Temperature  Temperature should be stable for Stable Output 16

PDE/Dark Rate Requirements Set by minimum detection threshold of Eγ = 60 MeV 17

PDE/Dark Rate Requirements Hamamatsu 50 μm Hamamatsu 25 μm 18

PDE/Dark Rate Requirements SensL 20 & 35 μm 19

PDE/Dark Rate Requirements SensL 35 μm 20

Performance Extrapolated to 5°C SensL 35 μm 21

In Summary  What We’re Getting Temperature dependent Hamamatsu SensL 22

BCAL Readout Modules Preamp PCB SiPM Peltier Cell Hot Plate Cold Plate Control PCB Power Connector Power Connector SMA Output Connector Preamp PCB SensL Hamamatsu 23

Temperature Stabilization of SiPM arrays 24

Option for Hamamatsu Control Gain during Temperature Variations 25

First Signals from Hamamatsu Unit Source – fast blue LED Ouput Risetime – ns Output Width – 75 ns Low amplitude – 18 mV High amplitude – 2.2 V 26

Array Evaluation Plan  Scan all elements of arrays to verify full operation  Relative PDE measurements  Compare arrays of both vendors  Verify operation at cooled temperature (SensL)  accelerated tests to simulate long-term stability  verification of radiation tolerance (< 1 krad) For GlueX  < 2 Gy/10 yrs 27

In Summary  Converging to Final Detector Selection  compare final prototypes under equivalent conditions  For Hamamatsu  need temperature stabilization  gain control thru thermistor feedback as possible option  For SensL  must be cooled  this will also provide stabilization  cooling will allow for higher PDE/gain  Final selection tests to be completed by end of Jan/2010 for final technology decision (SiPM vs FineMesh PMT) 28

Backup Slides

Readout Configurations SiPM/FM Option FM PMT Option B1

Original Prototype Array Packages SensL Hamamatsu B2

SPMA-16 – Problem channels Ch. 12 Ch ns Gate B3

Scanning Setup SiPM X/Y scanner LEDs diffuser Aperture (2.5 mm  ) B4

Initial Alignment Setup SiPM Penta prism Sighting scope Aperture (5 mm  ) B5

520 nm Emission spectrum from scintillating fiber 470 nm Kuraray SCSF-78 B6

Energy resolution 37 Set requirements for showers at center of Bcal module B7

Gain vs Temperature Ref: Lightfoot et al., J. Inst., Oct V br as temp. decreases B8

Dark Rate vs Temperature Ref: Lightfoot et al., J. Inst., Oct B9

New Ceramic-base SensL Array B10

New Ceramic-base SensL Array B11

Ceramic-base Hamamatsu Array B12

Ceramic-base Hamamatsu Array B13

Effect of Irradiation B14

Gamma Irradiation 40 Gy For GlueX => < 2 Gy/10 yrs B15

GlueX BCAL spec sheet B16