Jennifer M. Finefield Robert M. Williams, Advisor Colorado State University December 6, 2011 Selective HDAC Inhibitor Novel Drug Delivery Method Biosynthetic Studies
Efforts Toward the Synthesis of a Selective Histone Deacetylase Inhibitor
DNA Packaging For DNA to fit within the nucleus, it must be condensed DNA is packaged into chromatin To begin packaging, DNA is wound around histones
Gene Expression: Dynamic Wrapping and Unwrapping of DNA Histone Acetyltransferase (HAT) readies DNA for transcription Histone Deacetylase (HDAC) returns DNA to the inactive state HDAC inhibitors prevent removal of acetyl residues X
Transcriptional Control HDAC inhibitors mimic the natural substrate Deacetylation is prevented, eventually leading to cell death
Zn-Dependent Histone Deacetylase Enzymes HDAC enzymes are divided into different classes Within each class, there are different isoforms Many known HDAC inhibitors display very little selectivity for class or isoform Marks, P. A., et al., Advances in Cancer Research, 2005, 137
HDAC Inhibitors and Enhancing Selectivity Many known HDAC inhibitors display very little selectivity for class or isoform Wiest, O. et al., J. Med. Chem. 2004, 47, 3409; Methot, J. L., et al., Bioorg. Med. Chem. Lett. 2008, 18, 973
Improving Selectivity of HDACi: Targeting HDAC1 and HDAC2 Moradei, O. M., et al., J. Med. Chem. 2007, 50, 5543
Improving Selectivity of HDACi: Targeting HDAC3 Finefield, J. M.; Williams, R. M.; Wiest, O.; Bradner, J. Unpublished results
Improving Selectivity of HDACi: Targeting HDAC3 Finefield, J. M.; Williams, R. M.; Wiest, O.; Bradner, J. Unpublished results Ser118, present in HDAC1/2 (green) » Tyr118 in HDAC3 (blue)
Key Disconnections
Thiazoline-Pyridine Synthesis Bowers, A., et al., Org. Lett., 2009, 11, 1301
Synthesis of the Amide Isostere Bowers, A., et al., J. Am. Chem. Soc., 2009, 131, 2900
Alternate Route
2-Thiophenyl Biaryl Synthesis
Final Steps and Future Direction ______________________________________________________________________________________________________________________________
Design and Synthesis of a Novel Drug Delivery Method Specifically Targeted to Multiple Myeloma Cells
Multiple Myeloma MM is a plasma cell malignancy that can lead to bone destruction, anaemia, hypercalcaemia, and renal insufficiency MM is associated with older age (median age 66 years) and is found to occur more often in men than women Cause of MM remains unknown Current treatments include a single high-dose of melphalan, velcade, and various combination treatments Trialx.com, Mahindra, A., et al., Blood Reviews 2010, 24, S5; Barlogie, B., et al., Blood 2004, 103, 20
Tumor Specific Oligonucleotide (MB8226) UAGGCUACGUACUUAAGCG
The Trojan Horse Nakatani, K. et al., J. Am. Chem. Soc. 2000, 122, 2172
Naphthyridine Modified MM Drugs Currently undergoing clinical trials to be used as a combination treatment for multiple myeloma Given either as a high-dose treatment or as part of a combination for the treatment of multiple myeloma
Naphthyridine Modified Vorinostat Brown, E. V., J. Org. Chem. 1965, 30, 1607; Yoshida, M. et al., Synthesis 2008, 1099; Gediya, L. K. et al. J. Med. Chem. 2005, 48, 5047
Naphthyridine Modified Vorinostat Mai, A. et al. OPPI Briefs 2001, 33, 391
Naphthyridine Modified Melphalan Nakatani, K. et al., Bioorg. Med. Chem. 2003, 11, 2347; Gullbo, J. et al., Oncol. Res. 2003, 14, 113
Preliminary Test Results
Studies on the Biosynthesis of Reverse Prenylated Indole Secondary Metabolites from Aspergillus versicolor and Aspergillus sp. MF297-2
Reverse Prenylated Indole Secondary Metabolites
Proposed Biosynthesis of the Bicyclo[2.2.2]diazaoctane Ring System Porter and Sammes Diels-Alder Proposal (1970) Enzymatic Diels-Alder Reaction Porter, A. E. A. et al., Chem. Commun. 1970, 1103; Williams, R. M., Chem. Pharm. Bull. 2002, 50, 711.
Proposed Biosynthesis of the Bicyclo[2.2.2]diazaoctane Ring System Enzyme Controlled Stereoselectivity
Reverse Prenylated Indole Secondary Metabolites
Isolation of the Notoamides: New Addition to the Stephacidin Family 2007: Aspergillus sp. MF297-2 Kato, H. et al., Angew. Chem. Int. Ed. 2007, 46, 2254
Isolation of the Notoamides: New Addition to the Stephacidin Family 2008: Aspergillus versicolor NRRL Greshock, T. J. et al., Angew. Chem. Int. Ed. 2008, 47, 3573
Antipodal Natural Products Tsukamoto, S. et al., Org. Lett. 2009, 11, 1297; Greshock, T. J. et al., Angew. Chem. Int. Ed. 2008, 47, 3573
Isolation of the Notoamides: New Addition to the Stephacidin Family : Aspergillus sp. MF297-2 Tsukamoto, S. et al: JACS, 2009, 131, 3834; JNP 2008, 71, 2064; OL 2009, 11, 1297; JNP 2010, 73, 1438
Isolation of Notoamide E: A Potential Biosynthetic Precursor : Aspergillus sp. MF297-2 Tsukamoto, S. et al., J. Am. Chem. Soc. 2009, 131, 3834
Proposed Biosynthetic Pathway: Notoamide E Greshock, T. J. et al., Angew. Chem. Int. Ed. 2008, 47, 3573
Synthesis of [ 13 C] 2 -Notoamide E Tsukamoto, S. et al., JACS 2009, 131, 3834; Grubbs, A. W. et al., TL 2005, 46, 9013; Grubbs, A. W. et al., ACIE 2007, 46, 2257
Synthesis of [ 13 C] 2 -Notoamide E Tsukamoto, S. et al., J. Am. Chem. Soc. 2009, 131, 3834
[ 13 C] 2 -Notoamide E Incorporation Study with Aspergillus sp. MF297-2 No labeled bicyclo[2.2.2]diazaoctane containing metabolites were produced Tsukamoto, S. et al., J. Am. Chem. Soc. 2009, 131, 3834
[ 13 C] 2 -Notoamide E Incorporation Study with Aspergillus versicolor Finefield, J. M.; Williams, R. M. et al., Tetrahedron Lett. 2011, 52, 1987
Possible Precursors Leading to Stephacidin A
Synthesis of Deoxybrevianamide E and 6-Hydroxydeoxybrevianamide E Kato, H.; Nakamura, Y.; Finefield, J. M.; Umaoka, H.; Nakahara, T.; Williams, R. M.; Tsukamoto, S., TL 2011, 52, 6923
Synthesis of Ketopremalbrancheamide
Biosynthetic Breakthrough: Characterization of the ( )-Notoamide Biosynthetic Gene Cluster Ding, Y.; de Wet, J. R.; Cavalcoli, J.; Li, S.; Greshock, T. J.; Miller, K. A.; Finefield, J. M.; Sunderhaus, J. D.; McAfoos, T. J.; Tsukamoto, S.; Williams, R. M.; Sherman, D. H., JACS 2010, 132, 12733
Biosynthetic Breakthrough: Identification of Two Prenyltransferases Ding, Y.; de Wet, J. R.; Cavalcoli, J.; Li, S.; Greshock, T. J.; Miller, K. A.; Finefield, J. M.; Sunderhaus, J. D.; McAfoos, T. J.; Tsukamoto, S.; Williams, R. M.; Sherman, D. H., JACS 2010, 132, 12733
Early Steps in the Biosynthetic Pathway
Feeding Study with [ 13 C] 2 -[ 15 N]-6- Hydroxydeoxybrevianamide E No incorporation into advanced metabolites Finefield, J. M.; Williams, R. M. et al., JOC 2011, 76, 5954; Finefield, J. M.; Williams, R. M.; Tsukamoto, S. et al., TL 2011, 52, 6923
Possible Enantio-diverging Pathways from Notoamide S
Notoamide S Incorporation Study with Aspergillus versicolor Unlabeled synthesis of notoamide S: McAfoos, T. J. et al., Heterocycles 2010, 82, 461 Results from feeding study: Finefield, J. M.; Tsukamoto, S.; Williams, R. M. et al., unpublished results
Notoamide S Incorporation Study with Aspergillus sp. MF297-2 Tsukamoto, S. et al., unpublished results
Notoamide S: Additional Biosynthetic Insight
Notoamide T: Precursor Incorporation Studies ________________________________________________________________________________________________________________________________ Finefield, J. M., Tsukamoto, S.; Williams, R. M. et al., unpublished results
Notoamide S: Additional Biosynthetic Insight
Biosynthetic Precursor Incorporation Study ________________________________________________________________________________________________________________________________ Finefield, J. M.; Tsukamoto, S.; Williams, R. M. et al., Org. Lett. 2011, 13, 3802
Characterization of the ( )-Notoamide Biosynthetic Gene Cluster ( )-Notoamide Biosynthetic Gene Cluster (+)-Notoamide Biosynthetic Gene Cluster Li, S.; Sherman, D. H. et al., unpublished results
Current Postulated Biogenesis of the Notoamides and Stephacidins
Summary
Acknowledgements Prof. Robert M. Williams Williams Research Group Prof. David H. Sherman Sherman Research Group Prof. Sachiko Tsukamoto Tsukamoto Research Group Dr. James Berenson