Chapter 6 Linear Programming: The Simplex Method

Slides:



Advertisements
Similar presentations
Chapter 5: Linear Programming: The Simplex Method
Advertisements

Operation Research Chapter 3 Simplex Method.
Nonstandard Problmes Produced by E. Gretchen Gascon.
Chapter 6 Linear Programming: The Simplex Method
The Simplex Method The geometric method of solving linear programming problems presented before. The graphical method is useful only for problems involving.
Dr. Sana’a Wafa Al-Sayegh
Copyright (c) 2003 Brooks/Cole, a division of Thomson Learning, Inc
9.4 Linear programming and m x n Games: Simplex Method and the Dual Problem In this section, the process of solving 2 x 2 matrix games will be generalized.
Chapter 6 Linear Programming: The Simplex Method Section 3 The Dual Problem: Minimization with Problem Constraints of the Form ≥
Chapter 6 Linear Programming: The Simplex Method
Linear Inequalities and Linear Programming Chapter 5
The Simplex Method: Standard Maximization Problems
5.4 Simplex method: maximization with problem constraints of the form
Operation Research Chapter 3 Simplex Method.
Finite Mathematics & Its Applications, 10/e by Goldstein/Schneider/SiegelCopyright © 2010 Pearson Education, Inc. 1 of 99 Chapter 4 The Simplex Method.
Linear Programming (LP)
5.6 Maximization and Minimization with Mixed Problem Constraints
D Nagesh Kumar, IIScOptimization Methods: M3L1 1 Linear Programming Preliminaries.
Chapter 4 The Simplex Method
MIT and James Orlin © Chapter 3. The simplex algorithm Putting Linear Programs into standard form Introduction to Simplex Algorithm.
Stevenson and Ozgur First Edition Introduction to Management Science with Spreadsheets McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies,
LINEAR PROGRAMMING SIMPLEX METHOD.
Linear Programming - Standard Form
Learning Objectives for Section 6.2
1. The Simplex Method.
The Dual Problem: Minimization with problem constraints of the form ≥
Chapter 4 Simplex Method
The Two-Phase Simplex Method LI Xiao-lei. Preview When a basic feasible solution is not readily available, the two-phase simplex method may be used as.
Operations Research Assistant Professor Dr. Sana’a Wafa Al-Sayegh 2 nd Semester ITGD4207 University of Palestine.
8. Linear Programming (Simplex Method) Objectives: 1.Simplex Method- Standard Maximum problem 2. (i) Greedy Rule (ii) Ratio Test (iii) Pivot Operation.
Simplex Algorithm.Big M Method
Chapter 6 Linear Programming: The Simplex Method Section 2 The Simplex Method: Maximization with Problem Constraints of the Form ≤
Topic III The Simplex Method Setting up the Method Tabular Form Chapter(s): 4.
Barnett/Ziegler/Byleen Finite Mathematics 11e1 Learning Objectives for Section 6.4 The student will be able to set up and solve linear programming problems.
1 1 Slide © 2000 South-Western College Publishing/ITP Slides Prepared by JOHN LOUCKS.
Kerimcan OzcanMNGT 379 Operations Research1 Linear Programming: The Simplex Method Chapter 5.
1 1 © 2003 Thomson  /South-Western Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 1 © 2003 Thomson  /South-Western Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
Chapter 6 Linear Programming: The Simplex Method Section R Review.
Solving Linear Programming Problems: The Simplex Method
Business Mathematics MTH-367 Lecture 15. Chapter 11 The Simplex and Computer Solutions Methods continued.
Water Resources Development and Management Optimization (Linear Programming) CVEN 5393 Mar 4, 2011.
Linear Programming Revised Simplex Method, Duality of LP problems and Sensitivity analysis D Nagesh Kumar, IISc Optimization Methods: M3L5.
4  The Simplex Method: Standard Maximization Problems  The Simplex Method: Standard Minimization Problems  The Simplex Method: Nonstandard Problems.
Chapter 6 Linear Programming: The Simplex Method Section 3 The Dual Problem: Minimization with Problem Constraints of the Form ≥
 Minimization Problem  First Approach  Introduce the basis variable  To solve minimization problem we simple reverse the rule that is we select the.
1 1 Slide © 2005 Thomson/South-Western Linear Programming: The Simplex Method n An Overview of the Simplex Method n Standard Form n Tableau Form n Setting.
Chapter 4 Linear Programming: The Simplex Method
Chapter 6 Linear Programming: The Simplex Method Section 4 Maximization and Minimization with Problem Constraints.
Barnett/Ziegler/Byleen Finite Mathematics 11e1 Learning Objectives for Section 6.3 The student will be able to formulate the dual problem. The student.
An-Najah N. University Faculty of Engineering and Information Technology Department of Management Information systems Operations Research and Applications.
Simplex Method Simplex: a linear-programming algorithm that can solve problems having more than two decision variables. The simplex technique involves.
(i) Preliminaries D Nagesh Kumar, IISc Water Resources Planning and Management: M3L1 Linear Programming and Applications.
Business Mathematics MTH-367 Lecture 16. Chapter 11 The Simplex and Computer Solutions Methods continued.
Copyright © 2006 Brooks/Cole, a division of Thomson Learning, Inc. Linear Programming: An Algebraic Approach 4 The Simplex Method with Standard Maximization.
Business Mathematics MTH-367 Lecture 14. Last Lecture Summary: Finished Sec and Sec.10.3 Alternative Optimal Solutions No Feasible Solution and.
1 Simplex algorithm. 2 The Aim of Linear Programming A Linear Programming model seeks to maximize or minimize a linear function, subject to a set of linear.
Decision Support Systems INF421 & IS Simplex: a linear-programming algorithm that can solve problems having more than two decision variables.
(iii) Simplex method - I D Nagesh Kumar, IISc Water Resources Planning and Management: M3L3 Linear Programming and Applications.
The Simplex Method. and Maximize Subject to From a geometric viewpoint : CPF solutions (Corner-Point Feasible) : Corner-point infeasible solutions 0.
Simplex Algorithm.Big M Method
Perturbation method, lexicographic method
Linear programming Simplex method.
Chapter 4 Linear Programming: The Simplex Method
The Simplex Method: Standard Minimization Problems
The Simplex Method: Nonstandard Problems
The Simplex Method The geometric method of solving linear programming problems presented before. The graphical method is useful only for problems involving.
Linear programming Simplex method.
Presentation transcript:

Chapter 6 Linear Programming: The Simplex Method Section 4 Maximization and Minimization with Problem Constraints

Introduction to the Big M Method In this section, we will present a generalized version of the simplex method that will solve both maximization and minimization problems with any combination of ≤, ≥, = constraints M

Example Maximize P = 2x1 + x2 subject to x1 + x2 < 10 To form an equation out of the first inequality, we introduce a slack variable s1, as before, and write x1 + x2 + s1 = 10.

Example (continued) To form an equation out of the second inequality we introduce a second variable s2 and subtract it from the left side so that we can write –x1 + x2 – s2 = 2. The variable s2 is called a surplus variable, because it is the amount (surplus) by which the left side of the inequality exceeds the right side.

Example (continued) We now express the linear programming problem as a system of equations: x1 + x2 + s1 = 10 –x1 + x2 – s2 = 2 –2x1 – x2 + P = 0 x1, x2, s1, s2 > 0

Example (continued) It can be shown that a basic solution of a system is not feasible if any of the variables (excluding P) are negative. Thus a surplus variable is required to satisfy the nonnegative constraint. An initial basic solution is found by setting the nonbasic variables x1 and x2 equal to 0. That is, x1 = 0, x2,= 0,, s1= 10, s2 = -2, P = 0. This solution is not feasible because the surplus variable s2 is negative.

Artificial Variables In order to use the simplex method on problems with mixed constraints, we turn to a device called an artificial variable. This variable has no physical meaning in the original problem and is introduced solely for the purpose of obtaining a basic feasible solution so that we can apply the simplex method. An artificial variable is a variable introduced into each equation that has a surplus variable. To ensure that we consider only basic feasible solutions, an artificial variable is required to satisfy the nonnegative constraint.

Example (continued) Returning to our example, we introduce an artificial variable a1 into the equation involving the surplus variable s2: x1 + x2 – s2 + a1 = 2 To prevent an artificial variable from becoming part of an optimal solution to the original problem, a very large “penalty” is introduced into the objective function. This penalty is created by choosing a positive constant M so large that the artificial variable is forced to be 0 in any final optimal solution of the original problem.

Example (continued) We then add the term –Ma1 to the objective function: P = 2x1 + x2 – Ma1 We now have a new problem, called the modified problem: Maximize P = 2x1 + x2 - Ma1 subject to x1 + x2 + s1 = 10 x1 + x2 – s2 + a1 = 2 x1, x2, s1, s2, a1 > 0

Big M Method: Form the Modified Problem If any problem constraints have negative constants on the right side, multiply both sides by -1 to obtain a constraint with a nonnegative constant. Remember to reverse the direction of the inequality if the constraint is an inequality. Introduce a slack variable for each constraint of the form ≤. Introduce a surplus variable and an artificial variable in each ≥ constraint. Introduce an artificial variable in each = constraint. For each artificial variable a, add –Ma to the objective function. Use the same constant M for all artificial variables.

Key Steps for Solving a Problem Using the Big M Method Now that we have learned the steps for finding the modified problem for a linear programming problem, we will turn our attention to the procedure for actually solving such problems. The procedure is called the Big M Method.

Example (continued) The initial system for the modified problem is x1 + x2 + s1 = 10 –x1 + x2 – s2 + a1 = 2 –2x1 – x2 + Ma1 + P = 0 x1, x2, s1, s2, a1 > 0 We next write the augmented coefficient matrix for this system, which we call the preliminary simplex tableau for the modified problem.

Example (continued) x1 x2 s1 s2 a1 P To start the simplex process we require an initial simplex tableau, described on the next slide. The preliminary simplex tableau should either meet these requirements, or it needs to be transformed into one that does.

Definition: Initial Simplex Tableau For a system tableau to be considered an initial simplex tableau, it must satisfy the following two requirements: 1. The requisite number of basic variables must be selectable. Each basic variable must correspond to a column in the tableau with exactly one nonzero element. Different basic variables must have the nonzero entries in different rows. The remaining variables are then selected as non-basic variables. 2. The basic solution found by setting the non-basic variables equal to zero is feasible.

Example (continued) The preliminary simplex tableau from our example satisfies the first requirement, since s1, s2, and P can be selected as basic variables according to the criterion stated. However, it does not satisfy the second requirement since the basic solution is not feasible (s2 = -2.) To use the simplex method, we must first use row operations to transform the tableau into an equivalent matrix that satisfies all initial simplex tableau requirements. This transformation is not a pivot operation.

Example (continued) x1 x2 s1 s2 a1 P If you inspect the preliminary tableau, you realize that the problem is that s2 has a negative coefficient in its column. We need to replace s2 as a basic variable by something else with a positive coefficient. We choose a1.

Example (continued) We want to use a1 as a basic variable instead of s2. We proceed to eliminate M from the a1 column using row operations: x1 x2 s1 s2 a1 P (-M)R2 + R3 ->R3

Example (continued) From the last matrix we see that the basic variables are s1, a1, and P because those are the columns that meet the requirements for basic variables. The basic solution found by setting the nonbasic variables x1, x2, and s2 equal to 0 is x1 = 0, x2 = 0, s1 = 10, s2 = 0, a1 =2, P = –2M. The basic solution is feasible (P can be negative) and all requirements are met.

Example (continued) We now continue with the usual simplex process, using pivot operations. When selecting the pivot columns, keep in mind that M is unspecified, but we know it is a very large positive number. In this example, M – 2 and M are positive, and –M – 1 is negative. The first pivot column is column 2.

Example (continued) If we pivot on the second row, second column, and then on the first row, first column, we obtain: x1 x2 s1 s2 a1 P x1 x2 P Since all the indicators in the last row are nonnegative, we have the optimal solution: Max P = 14 at x1 = 4, x2 = 6, s1 = 0, s2 = 0, a1 = 0.

Big M Method: Summary To summarize: 1. Form the preliminary simplex tableau for the modified problem. 2. Use row operations to eliminate the Ms in the bottom row of the preliminary simplex tableau in the columns corresponding to the artificial variables. The resulting tableau is the initial simplex tableau. 3. Solve the modified problem by applying the simplex method to the initial simplex tableau found in the second step.

Big M Method: Summary (continued) 4. Relate the optimal solution of the modified problem to the original problem. A) if the modified problem has no optimal solution, the original problem has no optimal solution. B) if all artificial variables are 0 in the optimal solution to the modified problem, delete the artificial variables to find an optimal solution to the original problem C) if any artificial variables are nonzero in the optimal solution, the original problem has no optimal solution.