Chapter 11 Chi-Square Procedures 11.3 Chi-Square Test for Independence; Homogeneity of Proportions.

Slides:



Advertisements
Similar presentations
15- 1 Chapter Fifteen McGraw-Hill/Irwin © 2005 The McGraw-Hill Companies, Inc., All Rights Reserved.
Advertisements

Inference about the Difference Between the
Statistical Inference for Frequency Data Chapter 16.
Chapter 13: The Chi-Square Test
© 2010 Pearson Prentice Hall. All rights reserved The Chi-Square Test of Homogeneity.
© 2010 Pearson Prentice Hall. All rights reserved The Chi-Square Goodness-of-Fit Test.
© 2010 Pearson Prentice Hall. All rights reserved The Chi-Square Test of Independence.
Chapter 11 Chi-Square Procedures 11.1 Chi-Square Goodness of Fit.
Copyright © 2014, 2013, 2010 and 2007 Pearson Education, Inc. Chapter Hypothesis Tests Regarding a Parameter 10.
Chi-Square Tests and the F-Distribution
Presentation 12 Chi-Square test.
Chapter 13 Chi-Square Tests. The chi-square test for Goodness of Fit allows us to determine whether a specified population distribution seems valid. The.
1 Copyright © 2005 Brooks/Cole, a division of Thomson Learning, Inc. Analysis of Categorical Data Test of Independence.
Statistics for Managers Using Microsoft Excel, 5e © 2008 Prentice-Hall, Inc.Chap 12-1 Statistics for Managers Using Microsoft® Excel 5th Edition Chapter.
The table shows a random sample of 100 hikers and the area of hiking preferred. Are hiking area preference and gender independent? Hiking Preference Area.
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 11-1 Chapter 11 Chi-Square Tests Business Statistics, A First Course 4 th Edition.
Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Chapter Inference on Categorical Data 12.
For testing significance of patterns in qualitative data Test statistic is based on counts that represent the number of items that fall in each category.
Chapter 9: Non-parametric Tests n Parametric vs Non-parametric n Chi-Square –1 way –2 way.
Copyright © 2009 Pearson Education, Inc LEARNING GOAL Interpret and carry out hypothesis tests for independence of variables with data organized.
CHAPTER 5 INTRODUCTORY CHI-SQUARE TEST This chapter introduces a new probability distribution called the chi-square distribution. This chi-square distribution.
1 Pertemuan 11 Uji kebaikan Suai dan Uji Independen Mata kuliah : A Statistik Ekonomi Tahun: 2010.
Chi-Square Procedures Chi-Square Test for Goodness of Fit, Independence of Variables, and Homogeneity of Proportions.
Other Chi-Square Tests
Slide 26-1 Copyright © 2004 Pearson Education, Inc.
13.2 Chi-Square Test for Homogeneity & Independence AP Statistics.
Chapter 14: Chi-Square Procedures – Test for Goodness of Fit.
Chapter 11 Chi- Square Test for Homogeneity Target Goal: I can use a chi-square test to compare 3 or more proportions. I can use a chi-square test for.
Other Chi-Square Tests
Business Statistics: A First Course, 5e © 2009 Prentice-Hall, Inc. Chap 11-1 Chapter 11 Chi-Square Tests Business Statistics: A First Course Fifth Edition.
Copyright © 2010 Pearson Education, Inc. Slide
Section 10.2 Independence. Section 10.2 Objectives Use a chi-square distribution to test whether two variables are independent Use a contingency table.
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 11-1 Chapter 11 Chi-Square Tests and Nonparametric Tests Statistics for.
© Copyright McGraw-Hill CHAPTER 11 Other Chi-Square Tests.
CHAPTER INTRODUCTORY CHI-SQUARE TEST Objectives:- Concerning with the methods of analyzing the categorical data In chi-square test, there are 2 methods.
Chapter 13 Inference for Counts: Chi-Square Tests © 2011 Pearson Education, Inc. 1 Business Statistics: A First Course.
Chapter Outline Goodness of Fit test Test of Independence.
The table shows a random sample of 100 hikers and the area of hiking preferred. Are hiking area preference and gender independent? Hiking Preference Area.
Chapter 11: Chi-Square  Chi-Square as a Statistical Test  Statistical Independence  Hypothesis Testing with Chi-Square The Assumptions Stating the Research.
Slide 1 Copyright © 2004 Pearson Education, Inc..
Copyright © Cengage Learning. All rights reserved. Chi-Square and F Distributions 10.
11.2 Tests Using Contingency Tables When data can be tabulated in table form in terms of frequencies, several types of hypotheses can be tested by using.
Section 12.2: Tests for Homogeneity and Independence in a Two-Way Table.
Copyright © 2013, 2009, and 2007, Pearson Education, Inc. Chapter 11 Analyzing the Association Between Categorical Variables Section 11.2 Testing Categorical.
Chapter 14 Chi-Square Tests.  Hypothesis testing procedures for nominal variables (whose values are categories)  Focus on the number of people in different.
CHAPTER INTRODUCTORY CHI-SQUARE TEST Objectives:- Concerning with the methods of analyzing the categorical data In chi-square test, there are 3 methods.
Chapter 14 – 1 Chi-Square Chi-Square as a Statistical Test Statistical Independence Hypothesis Testing with Chi-Square The Assumptions Stating the Research.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Chapter 12 Tests of Goodness of Fit and Independence n Goodness of Fit Test: A Multinomial.
Chapter 11 Chi-Square Procedures 11.1 Chi-Square Goodness of Fit.
Chi-Square Tests.  Two way classification table – presents information on more than one variable for each element  Example: college students broken.
Chapter 11: Categorical Data n Chi-square goodness of fit test allows us to examine a single distribution of a categorical variable in a population. n.
Class Seven Turn In: Chapter 18: 32, 34, 36 Chapter 19: 26, 34, 44 Quiz 3 For Class Eight: Chapter 20: 18, 20, 24 Chapter 22: 34, 36 Read Chapters 23 &
Section 10.2 Objectives Use a contingency table to find expected frequencies Use a chi-square distribution to test whether two variables are independent.
Comparing Observed Distributions A test comparing the distribution of counts for two or more groups on the same categorical variable is called a chi-square.
Copyright © 2009 Pearson Education, Inc LEARNING GOAL Interpret and carry out hypothesis tests for independence of variables with data organized.
© 2010 Pearson Prentice Hall. All rights reserved Chapter Hypothesis Tests Regarding a Parameter 10.
Chapter 12 Chi-Square Tests and Nonparametric Tests
Chi-Square hypothesis testing
10 Chapter Chi-Square Tests and the F-Distribution Chapter 10
Chapter 11 Chi-Square Tests.
Chapter 12 Tests with Qualitative Data
Inference on Categorical Data
Testing for Independence
Chapter 10 Analyzing the Association Between Categorical Variables
Chapter 11 Chi-Square Tests.
Inference on Categorical Data
Analyzing the Association Between Categorical Variables
Inference for Two Way Tables
Chapter Outline Goodness of Fit test Test of Independence.
Chapter 11 Chi-Square Tests.
Presentation transcript:

Chapter 11 Chi-Square Procedures 11.3 Chi-Square Test for Independence; Homogeneity of Proportions

The chi-square independence test is used to determine whether there is association between a row variable and column variable in a contingency table constructed from sample data. The null hypothesis is that the variables are not associated, or independent. The alternative hypothesis is that the variables are associated, or dependent.

In a chi-square independence test, the null hypothesis is always H o : the variables are independent The alternative hypothesis is always H 1 : the variables are dependent

The idea behind testing these types of claims is to compare actual counts to the counts we would expect if the null hypothesis were true (if the variables are independent). If a significant difference between the actual counts and expected counts exists, we would take this as evidence against the null hypothesis.

The method for obtaining the expected counts requires that we determine the number of observations within each cell under the assumption the null hypothesis is true.

If two events are independent, then P(A and B) = P(A). P(B) We can use the Multiplication Principle for independent events to obtain the expected proportion of observations within each cell under the assumption of independence and multiply this result by, n, the sample size in order to obtain the expected count within each cell.

EXAMPLE Determining the Expected Counts in a Test for Independence In a poll, 883 males and 893 females were asked, “If you could have only one of the following, which would you pick: money, health, or love?” Their responses are presented in the table below. Determine the expected counts within each cell assuming that gender and response are independent. Source: Based on a Fox News Poll conducted January, 1999

Expected Frequencies in a Chi-Square Independence Test To find the expected frequencies in a cell when performing a chi-square independence test, multiply the row total of the row containing the cell by the column total of the column containing the cell and divide this result by the table total. That is

Test Statistic for the Test of Independence Let O i represent the observed number of counts in the ith cell, E i represent the expected number of counts in the ith cell. Then, approximately follows the chi-square distribution with (r – 1)(c – 1) degrees of freedom where r is the number of rows and c is the number of columns in the contingency table provided (1) all expected frequencies are greater than or equal to 1 and (2) no more than 20% of the expected frequencies are less than 5.

The Chi-Square Test for Independence If a claim is made regarding the association between (or independence of) two variables in a contingency table, we can use the following steps to test the claim provided 1. the data is randomly selected

The Chi-Square Test for Independence If a claim is made regarding the association between (or independence of) two variables in a contingency table, we can use the following steps to test the claim provided 1. the data is randomly selected 2. all expected frequencies are greater than or equal to 1.

The Chi-Square Test for Independence If a claim is made regarding the association between (or independence of) two variables in a contingency table, we can use the following steps to test the claim provided 1. the data is randomly selected 2. all expected frequencies are greater than or equal to no more than 20% of the expected frequencies are less than 5.

Step 1. A claim is made regarding the independence of the data. H o : the row variable and column variable are independent H 1 : the row variable and column variable are not independent

Step 2: Calculate the expected frequencies (counts) for each cell in the contingency table.

Step 3: Verify the requirements for the chi-square test for independence are satisfied. (1) all expected frequencies are greater than or equal to 1 (all E i > 1) (2) no more than 20% of the expected frequencies are less than 5.

Step 5: Compute the test statistic

EXAMPLETesting for Independence Source: Based on a Fox News Poll conducted January, 1999

In a chi-square test for homogeneity of proportions we test the claim that different populations have the same proportion of individuals with some characteristic.

EXAMPLEA Test of Homogeneity of Proportions The following question was asked of a random sample of individuals in 1992, 1998, and 2001: “Would you tell me if you feel being a teacher is an occupation of very great prestige?” The results of the survey are presented below: Source: The Harris Poll