© 2012 Pearson Education, Inc. A small, circular ring of wire (shown in blue) is inside a larger loop of wire that carries a current I as shown. The small.

Slides:



Advertisements
Similar presentations
Chapter 32 Inductance.
Advertisements

You reposition the two plates of a capacitor so that the capacitance doubles. There is vacuum between the plates. If the charges +Q and –Q on the two plates.
© 2012 Pearson Education, Inc. The two conductors a and b are insulated from each other, forming a capacitor. You increase the charge on a to +2Q and increase.
PHY1013S INDUCTANCE Gregor Leigh
Chapter Review.
Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 1 Chapter 20: Electromagnetic Induction.
© 2012 Pearson Education, Inc. { Chapter 29 Electromagnetic Induction (cont.)
Q29.1 A circular loop of wire is in a region of spatially uniform magnetic field. The magnetic field is directed into the plane of the figure. If the magnetic.
The current through the inductor can be considered a sum of the current in the circuit and the induced current. The current in the circuit will be constant,
Q31.1 A resistor is connected across an ac source as shown. Which graph correctly shows the instantaneous current through the resistor and the instantaneous.
Cutnell/Johnson Physics 8th edition
RL Circuits PH 203 Professor Lee Carkner Lecture 21.
Electromagnetic Induction
Physics 4 Inductance Prepared by Vince Zaccone
© 2012 Pearson Education, Inc. { Chapter 30 Inductance.
W12D1: RC and LR Circuits Reading Course Notes: Sections , , , ,
Ch. 32 Self Inductance Inductance A
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 14.1 Inductance and Magnetic Fields  Introduction  Electromagnetism  Reluctance.
Ch. 30 Inductance AP Physics. Mutual Inductance According to Faraday’s law, an emf is induced in a stationary circuit whenever the magnetic flux varies.
Physics for Scientists and Engineers, 6e Chapter – 32 Inductance.
Physics 2102 Inductors, RL circuits, LC circuits Physics 2102 Gabriela González.
Physics 2102 Lecture 19 Ch 30: Inductors and RL Circuits Physics 2102 Jonathan Dowling Nikolai Tesla.
-Self Inductance -Inductance of a Solenoid -RL Circuit -Energy Stored in an Inductor AP Physics C Mrs. Coyle.
Self-Inductance When the switch is closed, the current does not immediately reach its maximum value Faraday’s law can be used to describe the effect.
Fall 2008Physics 231Lecture 10-1 Chapter 30 Inductance.
AP Physics C Montwood High School R. Casao
Chapter 32 Inductance.
Induction and Inductance Chapter 30 Magnetic Flux.
RL and LC Circuits Capacitor and Inductors in Series Resistors and Inductors in Series.
Chapter 32 Inductance. Joseph Henry 1797 – 1878 American physicist First director of the Smithsonian Improved design of electromagnet Constructed one.
1 Chapter 16 Capacitors and Inductors in Circuits.
1 Faraday’s Law Chapter Ampere’s law Magnetic field is produced by time variation of electric field.
Chapter 32 Inductance. Self-inductance  A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the time-varying.
Fluid flow analogy. Power and energy in an inductor.
Chapter 32 Inductance.
Physics 121 Practice Problem Solutions 12 Inductance
Lecture 18-1 Ways to Change Magnetic Flux Changing the magnitude of the field within a conducting loop (or coil). Changing the area of the loop (or coil)
Self-Inductance and Circuits LC circuits. 0 1τ 2τ 3τ 4τ 63% ε /R I t Recall: RC circuit, increasing current.
Lecture 27: FRI 20 MAR Inductors & Inductance Ch.30.7–9 Inductors & Inductance Physics 2102 Jonathan Dowling Nikolai Tesla.
A circular loop of wire is in a region of spatially uniform magnetic field. The magnetic field is directed into the plane of the figure. If the magnetic.
© 2012 Pearson Education, Inc. A circular loop of wire is in a region of spatially uniform magnetic field. The magnetic field is directed into the plane.
© 2012 Pearson Education, Inc. A current i flows through an inductor L in the direction from point b toward point a. There is zero resistance in the wires.
Chapter 32 Inductance. Joseph Henry 1797 – 1878 American physicist First director of the Smithsonian Improved design of electromagnet Constructed one.
Chapter 32 Inductance. Self-inductance Some terminology first: Use emf and current when they are caused by batteries or other sources Use induced emf.
Slide 1Fig 32-CO, p Slide 2  As the source current increases with time, the magnetic flux through the circuit loop due to this current also increases.
Q30.1 A small, circular ring of wire is inside a larger loop that is connected to a battery and a switch S. The small ring and the larger loop both lie.
Copyright © 2009 Pearson Education, Inc. Chapter 32: Inductance, Electromagnetic Oscillations, and AC Circuits.
The two conductors a and b are insulated from each other, forming a capacitor. You increase the charge on a to +2Q and increase the charge on b to –2Q,
9. Inductance M is a geometrical factor! L is a geometrical factor!
Self Inductance Consider a solenoid L, connect it to a battery Area A, length  l, N turns What happens as you close the switch? Lenz’s law – loop resists.
PHYSICS 222 EXAM 2 REVIEW SI LEADER: ROSALIE DUBBERKE.
Physics 212 Lecture 19, Slide 1 Physics 212 Lecture 19 LC and RLC Circuits.
Chapter 30 Lecture 31: Faraday’s Law and Induction: II HW 10 (problems): 29.15, 29.36, 29.48, 29.54, 30.14, 30.34, 30.42, Due Friday, Dec. 4.
Halliday/Resnick/Walker Fundamentals of Physics
What We’ve Observed An increasing magnetic field induces a negative emf A decreasing magnetic field induces a positive emf A magnetic field that alternates.
Chapter 36 Inductance Capacitance Electric energy Magnetic energy Inductance.
Self Inductance Consider a solenoid L, connect it to a battery Area A, length  l, N turns What happens as you close the switch? Lenz’s law – loop resists.
Thursday August 2, PHYS 1444 Ian Howley PHYS 1444 Lecture #15 Thursday August 2, 2012 Ian Howley Dr. B will assign final (?) HW today(?) It is due.
5/23/16 1Oregon State University PH 213, Class #25.
Last time Ampere's Law Faraday’s law 1. Faraday’s Law of Induction (More Quantitative) The magnitude of the induced EMF in conducting loop is equal to.
Physics 6B Inductors and AC circuits Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB.
Physics 213 General Physics Lecture Last Meeting: Self Inductance, RL Circuits, Energy Stored Today: Finish RL Circuits and Energy Stored. Electric.
Chapter 29 Maxwell’s Equations.
14.1 Introduction Earlier we noted that capacitors store energy by producing an electric field within a piece of dielectric material Inductors also store.
Concept Questions with Answers 8.02 W15D2
11/13/2018.
Induction -->Inductors
Topics to be Discussed Steady State and Transient Response.
Ch. 31 Self Inductance Inductance A
Ch. 31 Self Inductance Inductance A
Presentation transcript:

© 2012 Pearson Education, Inc. A small, circular ring of wire (shown in blue) is inside a larger loop of wire that carries a current I as shown. The small ring and the larger loop both lie in the same plane. If I increases, the current that flows in the small ring Q30.1 A. is clockwise and caused by self-inductance. B. is counterclockwise and caused by self-inductance. C. is clockwise and caused by mutual inductance. D. is counterclockwise and caused by mutual inductance. Small ring I I Large loop

© 2012 Pearson Education, Inc. A small, circular ring of wire (shown in blue) is inside a larger loop of wire that carries a current I as shown. The small ring and the larger loop both lie in the same plane. If I increases, the current that flows in the small ring A30.1 A. is clockwise and caused by self-inductance. B. is counterclockwise and caused by self-inductance. C. is clockwise and caused by mutual inductance. D. is counterclockwise and caused by mutual inductance. Small ring I I Large loop

© 2012 Pearson Education, Inc. A current i flows through an inductor L in the direction from point b toward point a. There is zero resistance in the wires of the inductor. If the current is decreasing, Q30.2 A. the potential is greater at point a than at point b. B. the potential is less at point a than at point b. C. The answer depends on the magnitude of di/dt compared to the magnitude of i. D. The answer depends on the value of the inductance L. E. both C. and D. are correct.

© 2012 Pearson Education, Inc. A current i flows through an inductor L in the direction from point b toward point a. There is zero resistance in the wires of the inductor. If the current is decreasing, A30.2 A. the potential is greater at point a than at point b. B. the potential is less at point a than at point b. C. The answer depends on the magnitude of di/dt compared to the magnitude of i. D. The answer depends on the value of the inductance L. E. both C. and D. are correct.

© 2012 Pearson Education, Inc. A steady current flows through an inductor. If the current is doubled while the inductance remains constant, the amount of energy stored in the inductor Q30.3 A. increases by a factor of. B. increases by a factor of 2. C. increases by a factor of 4. D. increases by a factor that depends on the geometry of the inductor. E. none of the above

© 2012 Pearson Education, Inc. A steady current flows through an inductor. If the current is doubled while the inductance remains constant, the amount of energy stored in the inductor A30.3 A. increases by a factor of. B. increases by a factor of 2. C. increases by a factor of 4. D. increases by a factor that depends on the geometry of the inductor. E. none of the above

© 2012 Pearson Education, Inc. An inductance L and a resistance R are connected to a source of emf as shown. When switch S 1 is closed, a current begins to flow. The final value of the current is Q30.4 A. directly proportional to RL. B. directly proportional to R/L. C. directly proportional to L/R. D. directly proportional to 1/(RL). E. independent of L.

© 2012 Pearson Education, Inc. An inductance L and a resistance R are connected to a source of emf as shown. When switch S 1 is closed, a current begins to flow. The final value of the current is A30.4 A. directly proportional to RL. B. directly proportional to R/L. C. directly proportional to L/R. D. directly proportional to 1/(RL). E. independent of L.

© 2012 Pearson Education, Inc. Q30.5 An inductance L and a resistance R are connected to a source of emf as shown. When switch S 1 is closed, a current begins to flow. The time required for the current to reach one-half its final value is A. directly proportional to RL. B. directly proportional to R/L. C. directly proportional to L/R. D. directly proportional to 1/(RL). E. independent of L.

© 2012 Pearson Education, Inc. A30.5 An inductance L and a resistance R are connected to a source of emf as shown. When switch S 1 is closed, a current begins to flow. The time required for the current to reach one-half its final value is A. directly proportional to RL. B. directly proportional to R/L. C. directly proportional to L/R. D. directly proportional to 1/(RL). E. independent of L.

© 2012 Pearson Education, Inc. Q30.6 An inductance L and a resistance R are connected to a source of emf as shown. Initially switch S 1 is closed, switch S 2 is open, and current flows through L and R. When S 2 is closed, the rate at which this current decreases A. remains constant. B. increases with time. C. decreases with time. D. not enough information given to decide

© 2012 Pearson Education, Inc. A30.6 An inductance L and a resistance R are connected to a source of emf as shown. Initially switch S 1 is closed, switch S 2 is open, and current flows through L and R. When S 2 is closed, the rate at which this current decreases A. remains constant. B. increases with time. C. decreases with time. D. not enough information given to decide

© 2012 Pearson Education, Inc. An inductor (inductance L) and a capacitor (capacitance C) are connected as shown. If the values of both L and C are doubled, what happens to the time required for the capacitor charge to oscillate through a complete cycle? Q30.7 A.It becomes 4 times longer. B.It becomes twice as long. C. It is unchanged. D. It becomes 1/2 as long. E. It becomes 1/4 as long.

© 2012 Pearson Education, Inc. An inductor (inductance L) and a capacitor (capacitance C) are connected as shown. If the values of both L and C are doubled, what happens to the time required for the capacitor charge to oscillate through a complete cycle? A30.7 A.It becomes 4 times longer. B.It becomes twice as long. C. It is unchanged. D. It becomes 1/2 as long. E. It becomes 1/4 as long.

© 2012 Pearson Education, Inc. An inductor (inductance L) and a capacitor (capacitance C) are connected as shown. The value of the capacitor charge q oscillates between positive and negative values. At any instant, the potential difference between the capacitor plates is Q30.8 A.proportional to q. B.proportional to dq/dt. C. proportional to d 2 q/dt 2. D. both A. and C. E. all of A., B., and C.

© 2012 Pearson Education, Inc. An inductor (inductance L) and a capacitor (capacitance C) are connected as shown. The value of the capacitor charge q oscillates between positive and negative values. At any instant, the potential difference between the capacitor plates is A30.8 A.proportional to q. B.proportional to dq/dt. C. proportional to d 2 q/dt 2. D. both A. and C. E. all of A., B., and C.