Modeling speech signals and recognizing a speaker.

Slides:



Advertisements
Similar presentations
© Fraunhofer FKIE Corinna Harwardt Automatic Speaker Recognition in Military Environment.
Advertisements

Entropy and Dynamism Criteria for Voice Quality Classification Applications Authors: Peter D. Kukharchik, Igor E. Kheidorov, Hanna M. Lukashevich, Denis.
A Text-Independent Speaker Recognition System
Topics Recognition results on Aurora noisy speech databaseRecognition results on Aurora noisy speech database Proposal of robust formant.
CMSC Assignment 1 Audio signal processing
F 鍾承道 Acoustic Features for Speech Recognition: From Mel-Frequency Cepstrum Coefficients (MFCC) to BottleNeck Features(BNF)
LYU0103 Speech Recognition Techniques for Digital Video Library Supervisor : Prof Michael R. Lyu Students: Gao Zheng Hong Lei Mo.
Speaker Adaptation for Vowel Classification
I.1 ii.2 iii.3 iv.4 1+1=. i.1 ii.2 iii.3 iv.4 1+1=
Classification of Music According to Genres Using Neural Networks, Genetic Algorithms and Fuzzy Systems.
Презентація за розділом “Гумористичні твори”
Центр атестації педагогічних працівників 2014
Галактики і квазари.
Характеристика ІНДІЇ.
Процюк Н.В. вчитель початкових класів Боярської ЗОШ І – ІІІ ст №4
Representing Acoustic Information
Age and Gender Classification using Modulation Cepstrum Jitendra Ajmera (presented by Christian Müller) Speaker Odyssey 2008.
All features considered separately are relevant in a speech / music classification task. The fusion allows to raise the accuracy rate up to 94% for speech.
Study of Word-Level Accent Classification and Gender Factors
Classification of place of articulation in unvoiced stops with spectro-temporal surface modeling V. Karjigi , P. Rao Dept. of Electrical Engineering,
Speech Processing Laboratory
International Conference on Intelligent and Advanced Systems 2007 Chee-Ming Ting Sh-Hussain Salleh Tian-Swee Tan A. K. Ariff. Jain-De,Lee.
Jacob Zurasky ECE5526 – Spring 2011
Robust Speech Feature Decorrelated and Liftered Filter-Bank Energies (DLFBE) Proposed by K.K. Paliwal, in EuroSpeech 99.
Supervisor: Dr. Eddie Jones Co-supervisor: Dr Martin Glavin Electronic Engineering Department Final Year Project 2008/09 Development of a Speaker Recognition/Verification.
Dan Rosenbaum Nir Muchtar Yoav Yosipovich Faculty member : Prof. Daniel LehmannIndustry Representative : Music Genome.
Speaker Recognition by Habib ur Rehman Abdul Basit CENTER FOR ADVANCED STUDIES IN ENGINERING Digital Signal Processing ( Term Project )
Korean Phoneme Discrimination Ben Lickly Motivation Certain Korean phonemes are very difficult for English speakers to distinguish, such as ㅅ and ㅆ.
Overview ► Recall ► What are sound features? ► Feature detection and extraction ► Features in Sphinx III.
Speech Recognition Feature Extraction. Speech recognition simplified block diagram Speech Capture Speech Capture Feature Extraction Feature Extraction.
Noise Reduction Two Stage Mel-Warped Weiner Filter Approach.
Духовні символи Голосіївського району
Speaker Identification by Combining MFCC and Phase Information Longbiao Wang (Nagaoka University of Technologyh, Japan) Seiichi Nakagawa (Toyohashi University.
Performance Comparison of Speaker and Emotion Recognition
Speaker Change Detection using Support Vector Machines V.Kartik, D.Srikrishna Satish and C.Chandra Sekhar Speech and Vision Laboratory Department of Computer.
Chapter 7 Speech Recognition Framework  7.1 The main form and application of speech recognition  7.2 The main factors of speech recognition  7.3 The.
Speech Processing Dr. Veton Këpuska, FIT Jacob Zurasky, FIT.
Spectral and Temporal Modulation Features for Phonetic Recognition Stephen A. Zahorian, Hongbing Hu, Zhengqing Chen, Jiang Wu Department of Electrical.
Speech Processing AEGIS RET All-Hands Meeting
ARTIFICIAL NEURAL NETWORKS
Feature Mapping FOR SPEAKER Diarization IN NOisy conditions
Speech Processing AEGIS RET All-Hands Meeting
Sharat.S.Chikkerur S.Anand Mantravadi Rajeev.K.Srinivasan
3. Applications to Speaker Verification
VAD (Voice Activity Detector)
Ala’a Spaih Abeer Abu-Hantash Directed by Dr.Allam Mousa
Проф. д-р Васил Цанов, Институт за икономически изследвания при БАН
ЗУТ ПРОЕКТ на Закон за изменение и допълнение на ЗУТ
О Б Щ И Н А С И Л И С Т Р А П р о е к т Б ю д ж е т г.
Електронни услуги на НАП
Боряна Георгиева – директор на
РАЙОНЕН СЪД - БУРГАС РАБОТНА СРЕЩА СЪС СЪДЕБНИТЕ ЗАСЕДАТЕЛИ ПРИ РАЙОНЕН СЪД – БУРГАС 21 ОКТОМВРИ 2016 г.
Сътрудничество между полицията и другите специалисти в България
Съобщение Ръководството на НУ “Христо Ботев“ – гр. Елин Пелин
НАЦИОНАЛНА АГЕНЦИЯ ЗА ПРИХОДИТЕ
ДОБРОВОЛЕН РЕЗЕРВ НА ВЪОРЪЖЕНИТЕ СИЛИ НА РЕПУБЛИКА БЪЛГАРИЯ
Съвременни софтуерни решения
ПО ПЧЕЛАРСТВО ЗА ТРИГОДИШНИЯ
от проучване на общественото мнение,
Васил Големански Ноември, 2006
Програма за развитие на селските райони
ОПЕРАТИВНА ПРОГРАМА “АДМИНИСТРАТИВЕН КАПАЦИТЕТ”
БАЛИСТИКА НА ТЯЛО ПРИ СВОБОДНО ПАДАНЕ В ЗЕМНАТА АТМОСФЕРА
МЕДИЦИНСКИ УНИВЕРСИТЕТ – ПЛЕВЕН
Стратегия за развитие на клъстера 2015
Моето наследствено призвание
Правна кантора “Джингов, Гугински, Кючуков & Величков”
Безопасност на движението
Measuring the Similarity of Rhythmic Patterns
Keyword Spotting Dynamic Time Warping
Presentation transcript:

Modeling speech signals and recognizing a speaker

ReadWavMakeFrame Make model DataArray.wav filePointer to frames shift Frame duration MFCC’ s model Pre emphasis Windowing Powers spectrum Mel spectrum Mel cepustal Pointer to Frame Feature vector

The problem includes writing C++ programs for three stages: Modeling : Modeling speech signals Training : Creating a database of models for different speakers Testing : Identifying a speaker

Modeling : It will have four different modules/functions : 1. ReadWave Input : Input to this function is the.wav files obtained from different speakers. Output : Output of this function is an array containing the data from the.wav file. 2. MakeFrame Input : (i) Array obtained from the function ReadWave. (ii) Duration of a frame. (iii) Shift between two consecutive frames. Output : Pointer to arrays containing the frames.

3. CalucalateMFCC Input : Pointer to an array containing a frame. Output : An array containing the MFCC’s (feature vector.) 4. CreateModel: Input : The feature vectors Output : The model. Eg Mean and Co-variance of feature vectors.