ATM OCN 100 Summer ATM OCN Summer 2004 LECTURE 1B OBSERVATIONS of EARTH'S ATMOSPHERE (con’t.) u A. Introduction Practical Questions u B. The Planet Earth & Earth Systems u C. Survey of Planet Earth’s Atmosphere u D. Weather & Climate Elements u E. Probing the Atmosphere
ATM OCN 100 Summer Announcements u Sign-up –Class list –Official registration –Course Syllabus F NOTE Change Wed. to Fri. 21 Dec. on back –Honors Students u Class Note-taker for McBurney Center
ATM OCN 100 Summer Announcements u Sign-up –Class list –Official registration –Course Syllabus
ATM OCN 100 Summer ATM OCN Summer 2004 LECTURE 1B OBSERVATIONS of EARTH'S ATMOSPHERE u A. INTRODUCTION: Practical Questions – What constitutes the atmosphere? – What can we learn about the atmosphere? – Why do we want to know about it?
ATM OCN 100 Summer Earth-rise over Moon Apollo 8 22 Dec 1968 NASA-JSC
ATM OCN 100 Summer
7 ATM OCN Summer 2004 LECTURE 1B OBSERVATIONS of EARTH'S ATMOSPHERE (con’t.) u A. Introduction Practical Questions u B. The Planet Earth & Earth Systems
ATM OCN 100 Summer B. THE PLANET EARTH & EARTH SYSTEMS u Uniqueness of Planet Earth – Water Planet – The planet with life u Subsystems or Components of Planet Earth System – Lithosphere (Geosphere) – Atmosphere – Hydrosphere – Cryosphere – Biosphere (& Anthrosphere)
ATM OCN 100 Summer B. THE PLANET EARTH & EARTH SYSTEMS u Uniqueness of Planet Earth – Water Planet – The planet with life
ATM OCN 100 Summer Components of Planet Earth System NASA Apollo 17 (Dec 1972) ATMOSPHERE LITHOSPHERE (Geosphere) HYDROSPHERE CRYOSPHERE BIOSPHERE (& ANTHROSPHERE)
ATM OCN 100 Summer From Geog. 101 UW-Stevens Point Interactions within System – Weathering – Hydrological cycle
ATM OCN 100 Summer C. SURVEY of PLANET EARTH’S ATMOSPHERE u Importance of Earth's atmosphere – Moderates temperature of planet; – Shields life from harsh space environment; – Provides life with water, oxygen, etc. u Overall Dimensions of Earth's atmosphere – About 100 km (62 mi) thick; – Compare with 6370 km (3950 mi) earth radius; but....
VERTICAL VARIATION in ATMOSPHERIC DENSITIES [Source U.S. Std. Atmosphere, 1976]
ATM OCN 100 Summer km
ATM OCN 100 Summer SUNRISE FROM SPACE From STS-47 (JSC-NASA)
ATM OCN 100 Summer C. SURVEY OF PLANET EARTH’S ATMOSPHERE (con’t) u Importance of Earth's atmosphere u Overall Dimensions of Earth's atmosphere u Comparison with other components of Earth System
ATM OCN 100 Summer ESTIMATED MASSES of EARTH SYSTEM COMPONENTS [Source: J.Y. Wang, 1975]
ATM OCN 100 Summer D. WEATHER-CLIMATE ELEMENTS u What we need to Know – Weight (mass), Energy, Constituents, Motion of Atmosphere at a given time. u Observed Weather-Climate Elements From pages 7 & 8 of text: From pages 7 & 8 of text: – AIR PRESSURE – AIR TEMPERATURE (Max. & Min Temps) – ATMOSPHERIC HUMIDITY (Rel. Humidity & Dewpoint) – PRECIPITATION (24-hr totals) – CLOUD TYPE, AMOUNT (Sky Cover) – WINDS (SPEED & DIRECTION)
MADISON’S CURRENT WEATHER u Sky/Weather LGT RAIN u Temperature 69 u Dew Point 65 u Relative Humidity 86% u Wind S9 u Pressure mb
ATM OCN 100 Summer E. PROBING THE ATMOSPHERE u Surface vs. Aloft – Locations – Problems – Need for standardized & synchronous observations u Surface Weather Station – Human observer, – Thermometers, barometers, rain gauges, wind instruments, etc.
ATM OCN 100 Summer Traditional Surface Weather Station (See Fig. 2.8, Moran (2002))
ATM OCN 100 Summer Automated Weather Station (ASOS) (See Fig. 2.7, Moran (2002))
ATM OCN 100 Summer NWS & FAA Automatic Weather Stations
ATM OCN 100 Summer Automated Weather Buoy
ATM OCN 100 Summer First Order Stations & Cooperative Observer Network (National Climate Data Center, 2001)
ATM OCN 100 Summer Locations of NWS Forecast Offices Fig. 2.6 Moran (2002)
ATM OCN 100 Summer E. PROBING THE ATMOSPHERE (con’t.) u Weather Aloft: Other Observation Tools/Platforms – Need for F Rugged instruments F Remote sensing
ATM OCN 100 Summer Manned Balloons (18 th & 19 th Centuries)
ATM OCN 100 Summer Weather Kites (ca. 1894)
ATM OCN 100 Summer Aircraft Weather Observations (ca. 1934)
ATM OCN 100 Summer Radiosonde
32 Inflation of a radiosonde balloon See Pg Moran (2002)
ATM OCN 100 Summer Radiosonde prepared for launch See Pg Moran (2002)
ATM OCN 100 Summer Radiosonde (con’t.) See Pg Moran (2002)
ATM OCN 100 Summer Radiosonde launched See Pg Moran (2002)
ATM OCN 100 Summer Radiosonde (con’t.)
ATM OCN 100 Summer Radiosonde (Moran & OLWS)
ATM OCN 100 Summer Computer display of sounding at NWS Office See Pg Moran (2002)
ATM OCN 100 Summer RADIOSONDE LOCATIONS See Fig. A.2 Moran (2002)
ATM OCN 100 Summer NWS Upper Air Network See Fig. A.2 Moran (2002) GCOS = Global Climate Observing System
ATM OCN 100 Summer Stratospheric Balloons
ATM OCN 100 Summer Meteorological Rockets (Rocketsondes)
ATM OCN 100 Summer Weather Radar See Pg Moran (2002)
ATM OCN 100 Summer Principles of Weather Radar (in reflectivity mode)
ATM OCN 100 Summer Weather Radar (con’t.)
ATM OCN 100 Summer Weather Radar (con’t.)
ATM OCN 100 Summer NWS Radome See Fig Moran (2002)
ATM OCN 100 Summer Radar Display Console From J.M. Moran & WES Project of AMS
ATM OCN 100 Summer Radar Display in Reflectivity Mode
ATM OCN 100 Summer Principles of Weather Radar (in velocity or Doppler mode) See Fig. 7.21, Moran (2002)
ATM OCN 100 Summer Radar Display in Doppler Mode Van Wert, OH tornado 10 Nov 2002 from Ft. Wayne, IN NWS Doppler Radar
ATM OCN 100 Summer NWS DOPPLER RADAR SITES (See also Fig. 2.6, Moran (2002))
ATM OCN 100 Summer Current NWS Radar Reflectivity
ATM OCN 100 Summer Composite National Radar Image See Fig – Moran (2002)
ATM OCN 100 Summer Weather Satellites and the Space Science & Engineering Center (SSEC)
ATM OCN 100 Summer See Fig. 1.6 – Moran (2002)
ATM OCN 100 Summer Early GOES Satellite
ATM OCN 100 Summer Geosynchronous Satellite Imaging Field of View
ATM OCN 100 Summer ATS-III in 1968
ATM OCN 100 Summer Recent GOES Satellite
ATM OCN 100 Summer GOES-11 in 2000
ATM OCN 100 Summer Nighttime lights from DMSP Satellites
ATM OCN 100 Summer Visible vs. IR Images
ATM OCN 100 Summer Current Visible Satellite Image See Fig. 1.8 – Moran (2002) White = Reflective Clouds Dark = Night Dark = Low reflection oceans
ATM OCN 100 Summer Current Infrared Satellite Image White = Cold Clouds See Fig. 1.9 – Moran (2002) Dark = Warm Surface
ATM OCN 100 Summer Current Water Vapor Satellite Image White = Moist, rising air & Clouds See Fig – Moran (2002)
ATM OCN 100 Summer Man Computer Data Acquisition System (McIDAS) at SSEC/UW-Madison
ATM OCN 100 Summer See Fig. 1.7 – Moran (2002)
ATM OCN 100 Summer
70 TIROS in 1960s
ATM OCN 100 Summer TIROS I (1960) vs. NOAA 15 (2000)
ATM OCN 100 Summer Polar Orbiting (POES) Satellite NOAA-M Summer 2002 GFSC-NASA
ATM OCN 100 Summer Weather Satellites and the Space Science & Engineering Center (SSEC)
ATM OCN 100 Summer MODIS in 2000 (Moderate-resolution Imaging Spectroradiometer)
ATM OCN 100 Summer MODIS
76 Wind Profiler (FSL) See Pg. 186 Moran (2002)
ATM OCN 100 Summer Wind Profiler Network (FSL)
ATM OCN 100 Summer Wind Profiler Network (FSL)
ATM OCN 100 Summer Current Wind Profile at Blue River, WI
ATM OCN 100 Summer F. VISUALIZING THE WEATHER: THE SURFACE WEATHER MAP u Meaning of synoptic weather analysis – synoptic: “syn” = same + “optic” = to see u Goal of synoptic weather analysis u Requirements for synoptic weather analysis – Same time of observation – Uniform instruments & observation techniques
ATM OCN 100 Summer MAP of TIME ZONES ( from U.S. Naval Observatory, 1996) See pg. 14, Moran (2002)
ATM OCN 100 Summer F. THE SURFACE WEATHER MAP (con’t.) u Historical perspective – First weather map in 1819 of 1783 Storm; – Early U.S. Weather maps in 1870’s.
ATM OCN 100 Summer Surface weather map Sep. 1872
ATM OCN 100 Summer NWS Surface weather map June 2004
ATM OCN 100 Summer F. THE SURFACE WEATHER MAP (con’t.) u Interpretation of modern surface weather maps where...
ATM OCN 100 Summer Sample Modern Weather Map Figure 1.3, Moran (2002)
ATM OCN 100 Summer ON THE SURFACE WEATHER MAP F F Pressure systems – –Isobars (“iso” + “bar”) – –Highs & Lows F F Winds – –Circulation around Highs & Lows – –The “Hand-twist Model”
ATM OCN 100 Summer Map View of Flow around High Pressure Fig. 1.3A, Moran (2002)
ATM OCN 100 Summer Air Converging Aloft See Fig. 8.20, Moran (2002) H
ATM OCN 100 Summer Map View of Flow around Low Pressure Fig. 1.3B, Moran (2002)
ATM OCN 100 Summer Air Diverging Aloft Fig. 8.21, Moran (2002) L
ATM OCN 100 Summer ON THE SURFACE WEATHER MAP Pressure systems F F Winds F F Clouds Mainly around lows F F Temperature Patterns – –Isotherms (“iso” + “therms”) F F Fronts – –Cold fronts, warm fronts & stationary fronts
ATM OCN 100 Summer Warm Front
ATM OCN 100 Summer Cold Front
ATM OCN 100 Summer Stationary Fronts
ATM OCN 100 Summer Current Surface Weather Map with Isobars (“iso” = equal & “bar” = weight), Fronts & Radar Isobars
ATM OCN 100 Summer Current Visible Satellite Image Reflective Clouds
ATM OCN 100 Summer Current Temperatures ( ° F) & Isotherms (“iso” = equal +”therm” = temperature)
ATM OCN 100 Summer Current Surface Weather Map with Isobars (“iso” = equal & “bar” = weight), Fronts & Radar Isobars
ATM OCN 100 Summer Rule of Thumb! Weather Systems move: u From West to East in midlatitudes but … u From East to West in tropics
ATM OCN 100 Summer Yesterday’s Surface Weather Map with Isobars (“iso” = equal & “bar” = weight), Fronts & Radar Isobars
ATM OCN 100 Summer Current Surface Weather Map with Isobars (“iso” = equal & “bar” = weight), Fronts & Radar Isobars
ATM OCN 100 Summer Tomorrow AM Forecast Map
ATM OCN 100 Summer Track of Hurricane Erin
ATM OCN 100 Summer
106 QUIZ!!! u Which way does the wind circulate around a high pressure center? u And around a Low? u Answers….