Plasma Node: Use Case Analysis Frascati, EuroPLANET N7 meeting, October 9, 2007 C. Jacquey, N. André, M. Gangloff, R. Hitier, E. Pallier, E. Budnik, V.

Slides:



Advertisements
Similar presentations
AMDA service Visualisation module Analysis module Time Table manager Local database Remote database Download module.
Advertisements

The CDPP Centre de Données de la Physique des Plasmas Plasma Physics Data Centre.
I3/CA Europlanet - EC Contract EUROPLANET A network of the EU in support to the strengthening of planetary sciences.
I3/CA Europlanet - EC Contract EUROPLANET in FP-7 Tentative overall structure of Europlanet in FP7 and further Preparations.
IWF Graz … 1 H. Lammer (1), M. L. Khodachenko (1), H. I. M. Lichtenegger (1), Yu. N. Kulikov (2), N. V. Erkaev (3), G. Wuchterl (4), P. Odert (5), M. Leitzinger.
Geospace Electrodynamic Connections (GEC) Mission The GEC mission has been in the formulation phase as part of NASA’s Solar Terrestrial Probe program for.
Planets and Solar System Science at Low Frequencies Philippe Zarka LESIA, CNRS-Observatoire de Paris France Towards a European.
V. Génot, C. Jacquey, E. Budnik, R. Hitier, M. Bouchemit, M. Gangloff Toulouse, France R. Conseil, D. Heulet, and C. Huc CNES Science archives.
Budget and Roles of Heavy Ions in the Solar System M. Yamauchi, I. Sandahl, H. Nilsson, R. Lundin, and L. Eliasson Swedish Institute of Space Physics (IRF)
The planets in our Solar System. * * * * * *
Solar and STP Physics with AstroGrid 1. Mullard Space Science Laboratory, University College London. 2. School of Physics and Astronomy, University of.
Solar wind interaction with the comet Halley and Venus
Operating a Virtual Observatory Raymond J. Walker, Jan Merka, Todd A. King, Thomas Narock, Steven P. Joy, Lee F. Bargatze, Peter Chi and James Weygand.
NASA Sun-Solar System Connection Roadmap 1 Targeted Outcome: Phase , Safeguarding our Outbound Journey Determine Extremes of the Variable Radiation.
NASA Sun-Solar System Connection Roadmap 1 Targeted Outcome: Phase , Safeguarding our Outbound Journey Determine Extremes of the Variable Radiation.
NASA Sun-Solar System Connection Roadmap 1 Targeted Outcome: Phase , Safeguarding our Outbound Journey Determine Extremes of the Variable Radiation.
Time Table exchange QSAS / CL / CAA / AMDA CESR, 25/26 feb
HDMC VxO SPASE June 2008 VO-oriented activities of the CDPP M. Gangloff, E. Budnik, M. Bouchemit C. Jacquey, V. Génot, N. André, B. Cecconi, B. Lavraud.
The Virtual Space weather Applications Network of Tools – ViSpaNeT - A Virtual Observatory for SWE data and model assets P. Beltrami Karlezi etamax space.
Österreichische Akademie der Wissenschaften (ÖAW) / Institut für Weltraumforschung (IWF), Graz, Austria, T +43/316/ , iwf.oeaw.ac.atDownload:2013.
Volcanoes, Atmospheres, and Magnetospheres, Oh My!
AMDA and CLweb Two complementary web-based services for spacecraft data exploitation with help from LESIA and support from CNES and CNRS Benoit Lavraud,
Computer Simulations in Solar System Physics Mats Holmström Swedish Institute of Space Physics (IRF) Forskarskolan i rymdteknik Göteborg 12 September 2005.
PLUTO AND THE KUIPER BELT Beyond Neptune, the most distant major planet, are a large number of smaller objects, all of which currently known are smaller.
Comparative Aurora Cross-body –Intrinsic magnetospheres (e.g., Earth, Giant planets) –Induced magnetospheres (e.g., Venus, Mars, Titan) Cross-wavelength:
IDIS Plasma Node: Status, Aspects & Issues Overview of JRA-IDIS (WP#25) and SA-IDIS (WP#21) EC Grant agreement n° F. Topf.
THEMIS launch meeting Cape Canaveral Feb , 2007 C. Jacquey, V. Génot, E. Budnik, R. Hitier, M. Bouchemit CDPP/CESR, Toulouse, France AMDA Automated.
The SPASE Data Model: Standard Metadata for Space Science Data Description J. Thieman, T. King, A. Roberts, J. King, C. Harvey, and P. Richards Oct. 24,
AMDA, Automated Multi-Dataset Analysis: A web-based service provided by the CDPP. Jacquey 1 C., V. Génot 1, E. Budnik 2, R. Hitier 3, M. Bouchemit 1, M.
International Conference on Comparative Planetology: Venus - Earth - Mars ESTEC, Noordwijk, The Netherlands, Thursday 14 May :10:00, Abstract #
Space Research Institute Graz Austrian Academy of Sciences CERN, Geneve, June 2006 Helmut O. Rucker Exploring the Planets and Moons in our Solar System.
Combined use of AMDA, CAA, QSAS and CL based on time-table exchange. C. Jacquey, V. Génot, E. Budnik, M. Bouchemit, M. Gangloff, CDPP/CESR B. Cecconi,
Solar Wind and Coronal Mass Ejections
29 August, 2011 Beijing, China Space science missions related to ILWS in China
JAXA’s Exploration of the Solar System Beyond the Moon and Mars.
Solar Shield project - lessons learned and advances made (ccmc.gsfc.nasa.gov/Solar_Shield) Pulkkinen, A., M. Hesse, S. Habib, F. Policelli, B. Damsky,
Solar Shield project - lessons learned and advances made Pulkkinen, A., M. Hesse, S. Habib, F. Policelli, B. Damsky, L. Van der Zel, D. Fugate, W. Jacobs,
SPASE: Metadata Interoperability in the Great Observatory Environment Jim Thieman Todd King Aaron Roberts Joe King AGU Joint Assembly May 23, 2006.
Observatoire de Paris University of Minnesota University of California - Berkeley Goddard Space Flight Center STEREO SWG, Fall Hills, Meredith, NH STEREO/WAVES.
AMDA, Automated Multi-Dataset Analysis: A web-based service provided by the CDPP usable for THEMIS data exploitation. THEMIS SWT, Boulder March 23-25,
The CDPP (Centre de Données de Physique des Plasmas) is the french national centre of natural plasma data. Development of new tools and interoperability.
Some progress on ‘linking together’ models Nick Achilleos Lecturer, Department of Physics University College London With thanks.
Universal Processes in Neutral Media Roger Smith Chapman Meeting on Universal Processes Savannah, Georgia November 2008.
PLANS FOR THE INTERNATIONAL HELIOPHYSICAL YEAR (IHY) June, 2005 An international program of scientific research Joseph Davila, Barbara Thompson, Nat Gopalswamy.
SolarFlows Dr. Gabriele Pierantoni (TCD). Contents What is Heliophysics ? How could workflows help ? Some examples What we are doing...
Plasma Node demonstrators 1/Registry : –Set of XML descriptors of planetary plasma data (MAPSKP, VEX, MEX ) –Compliant with the SPASE data model
ADASS the Planning and Scheduling Perspective Roadmap: - How planning and scheduling fits in at ADASS - ADASS planning and scheduling posters and presentations.
NA1: Observational Infrastructure Networking EC Grant agreement n° H.O. Rucker 1, S. Miller 2, and M. Scherf 1 1 and IWF-Graz.
SWT Overview 1 UCB, Nov15/16, 2006 Mirror site and services at CESR and CDPP Christian Jacquey, CDPP, CESR, Emmanuel Penou, CESR,
Krusenberg Herrgård 12 June 2007 L Nordh/Mats André Swedish Report to ILWS.
WELCOME to IWF Graz Austrian Academy of Sciences Space Research Institute (IWF)
CRRES observations indicate an abrupt increase in radiation belt fluxes corresponding to the arrival of a solar wind shock. The processes(s) which accelerate.
STEREO and the Virtual Heliospheric Observatory Tom Narock 1,2 Adam Szabo 1 Jan Merka 2 (1) NASA/Goddard Space Flight Center (2) L3 Communications, GSI.
HISAKI mission – ひさき – Chihiro Tao 1,2, Nicolas Andre 1, Hisaki/EXCEED team 1. IRAP, Univ. de Toulouse/UPS-OMP/CNRS 2. now at NICT
Solar Wind Propagation Tool Chihiro Tao 1,2, Nicolas Andre 1, Vincent Génot 1, Alexis P. Rouillard 1, Elena Budnik 1, Arnaud Biegun 1, Andrei Fedorov 1.
HELIO: Discovery and Analysis of Data in Heliophysics Robert Bentley, John Brooke, André Csillaghy, Donal Fellows, Anja Le Blanc, Mauro Messerotti, David.
Kimura, T. , R. P. Kraft, R. F. Elsner, G. Branduardi-Raymont, G. R
Solar System Plasma data archiving in France
Evolution of solar wind structures between Venus and Mars orbits
D. Odstrcil1,2, V.J. Pizzo2, C.N. Arge3, B.V.Jackson4, P.P. Hick4
The IMPEx Data Model and Protocol
EuroPlanet Integrated and Distributed Information Service (IDIS)
Solar and Heliospheric Physics
Space weather at unmagnetized planets
The planets in our Solar System
Probes A probe is an unmanned, unpiloted spacecraft carrying instruments intended for use in exploration of outer space or celestial bodies other than.
The planets in our Solar System
Probes A probe is an unmanned, unpiloted spacecraft carrying instruments intended for use in exploration of outer space or celestial bodies other than.
Maria Teresa Capria December 15, 2009 Paris – VOPlaneto 2009
Institut de mécanique céleste et de calcul des éphémérides
Presentation transcript:

Plasma Node: Use Case Analysis Frascati, EuroPLANET N7 meeting, October 9, 2007 C. Jacquey, N. André, M. Gangloff, R. Hitier, E. Pallier, E. Budnik, V. Génot, B. Cecconi, C. Harvey, CDPP/CESR, Toulouse F. Topf, H. Rucker, M. Khodachenko, IWF, Graz

Challenges of IDIS/plasma node: components of the problem Study types:  Case studies  Statistical/systematical studies  Simulation  Theory Fields  Plasma  Comparative studies  Heliophysics studies  Global (inter-nodes) planetary studies Type of ressources (data, services, tools, …): %Plasmas, E-B fields %Neutral (atmosphere, exosphere, other..) %Dust, Rings %Small bodies %Planetary surface, volcanism, … %Solar observations %… %Models, simulation codes %Data analysis tools %Data treatment tools % … Two levels: -Intra-node: only dealing with plasma ressources, BUT, interacting with other plasma Vos (HELIO, US-VOs) -Inter-nodes: exchanging ressources with nodes of different thematics Þthe Big Challenge… Þand a strong justification of a planetary VO

Three main classes of resources (1)Related to pointing instrument (i.e. camera, telescope), remote data  Localisation (a, d, R) are the primary parameters  e.g. Astronomy  IVOA (2)Related to in-situ measurement on dynamical phenomena  Time span and region are the primary parameters  e.g. Solar Wind data + magnetosphere data  SPASE (3)Combining both  e.g., ionosphere, atmosphere dynamics  e.g, aurora images  e.g. dynamical astrophysics: stellar magnetic field, exoplanets, …  IVOA, SPASE

Goals of the Europlanet/N7 action in FP6?  (1) Inventory of the resources (until what level?)  (2) Science cases: Identifying user requirements and scientific specifications  (3) From them, recommending specifications on: %Final product: reference document, basis for the FP7 proposal  Preparing the FP7 Europlanet project  (4) Build demonstrators/experimentators: to be applied to use cases -Data -Services -Tools -Models Description, exchange, exploitation

We do not start from nothing… ■ SPASE ■ IVOA■ PDS For building a VO, the basis of everything is a standard for describing the ressources, i.e., -a data (resource) model + a dictionnary -or a model + several dictionnaries -or several [model+dictionary(ies)] + translation tools Defining the specifications on the data model(s) of the future planetology VO is one of the main goal of FP6/N7 In pratice, in regards of the user requirements : (i)Are SPASE, IVOA or PDS good basis? (ii)Which one – or combination - is the most adapted? (iii)Recommendations for FP7 project?

Prototypes/ Demonstrators Plasma node: the adopted method for science case analysis Use case analysis User requirement specifications Confrontation to the existing models: SPASE, IVOA, PDS  Are there blocking points, incompatibilities in the model?  What is missing?  What is not appropriate?  Which extensions/modifications could be considered? Modified/extended models Specifications of the IDIS data model Recommendations for selecting, modifying, extending the existing models – or combining some of them Recommendations for communicating with external VOs

Application: science case “Solar wind / saturn magnetosphere interaction and auroras” (1) Needed resources  In situ data -CASSINI B-field, plasma, particles -Heliospheric (ACE, WIND, ULYSSES, MEX) B-field, plasma, particles  Remote data -Solar observations -CASSINI, ULYSSES radio -CASSINI aurora images -HST, FUSE saturn aurora images  Services -Integrated analysis tools -Solar wind propagation simulation -Interplanetary disturbance (CME) propagation simulation In red, resources coming from IDIS In blue, resources coming from external VOs

Needed resources  In situ data -CASSINI B-field, plasma, particles  extended-SPASE, (PDS?) -Heliospheric (ACE, WIND, ULYSSES, MEX) B-field, plasma, particles  SPASE  Remote data -Solar observations  SPASE, IVOA -CASSINI, ULYSSES radio  extended-SPASE, (PDS?) -HST, FUSE saturn aurora images  IVOA  Services -integrated analysis tools  None -Solar wind propagation simulation  in development in SPASE -Interplanetary disturbance (CME) propagation simulation  in development in SPASE Application: science case “Solar wind / saturn magnetosphere interaction and auroras” (2)

Needed extensions on SPASE  Spacecraft attitude does not exist in SPASE (yet)  Instrument attitude does not exist in SPASE (yet)  Field of view of instrument does not exist in SPASE (yet)  But it is possible to implement extensions. Spase[Rq]ase[Rq] Version[Rq] rsion[Rq] Catalog[* of A] talog[* of A] Display Data[* of A] splay Data[* of A] Numerical Data[* of A] merical Data[* of A] Granule[* of A] anule[* of A] Instrument[* of A] strument[* of A] Observatory[* of A] servatory[* of A] Person[* of A] rson[* of A] Registry[* of A] gistry[* of A] Repository[* of A] pository[* of A] Service[* of A] rvice[* of A] Extension[* of A] tension[* of A]

Extensions in observatory description

Extensions in instrument description

Prototypes.demonstrators Registry demonstrator: (Demo if extra time) -Description SPASE of several planetary plasma data (MAPSKP, VEX, MEX) -Building a registry -Building a search engine -Goals: demonstration and experimentation (standard versus user requirements, SPASE extensions, …) Science demonstrator: (Demo if extra time) -Based on AMDA -Using distant data (MAPSKP, VEX-MAG, HST) and local data -High level tools and functionalities -Goals: demonstration and experimentation

An example of registry for space physics: VSPO

AMDA, Automated Multi-Dataset Analysis (  Multi-spacecraft and multi-instrument data -Visualisation -user defined parameter computation -Standard model computation -Data and computed parameter extraction -Event list production and management  Automated and semi-automated (visual) search on the content of the data  Access to external databases (now: CDAWeb, CDPP, next: MAPSKP, VEX-MAG, HST images, MEDOC solar data, …) Local Database AMDA System CDAWeb CDPP MAPSKP

Prototype application on use cases Registry prototype Searching the resource location (MAPSKP, HST aurora, VEX, ACE) AMDA/Planeto Science prototype Access, extraction of the targeted data (distant or local) Integrated analysis USER MAPSKP Local database VEX-MAG Graz HST Request of resource location

IDIS external connections IDIS requests to outside:  Astronomy (IVOA), HST, XMM, Ground radio-astronomy (Nancay, LOFAR)  Plasma solar system (heliophysics): Heliophysics VO (ULYSSES Jupiter flyby), HELIO, EGSO, Radio- planetology (ULYSSES)  Spectroscopy database Outside resource requests to IDIS:  Earth magnetosphere studies: ROSETTA, CASSINI or GALILEO earth fly-by  Heliophysics Vos: Planetary probes used as solar wind monitors

Conclusion What can be done shortly (2 months):  User requirement reference document for plasma field  Analysis of existing standards et sub-sequent recommendations for FP7 but need help for IVOA (CDS, ASOV) and PDS  SPASE based registry demonstrator for some planetary plasma resources  Specification of communication with external VOs (for the plasma field) And for February 15, 2008:  User requirement reference document for inter-thematic (inter-node) fields, i.e., more science cases to be analysed  Requirements on the inter-node data model, recommendation for the future IDIS  Science demonstrator, V1.0, (MAPSKP, HST, VEX, MEX)

Plasma node

Plasma node tasks / CDPP ■ Use case analysis %User requirement analysis/synthesis: reference document %Confrontation to existing standard (SPASE, IVOA, PDS) %System requirement specifications: reference document ÞOption on standard development ■ Registry demonstrator (SPASE, maybe IVOA) ■ Science demonstrator based on distributed ressources

List of tasks (July 24-25, 2007meeting) ·Inventory (EP, FT) ·Use case analysis prototypes (1: FT., GoG/ NA, CJ, VG, BC) ·Comparison user requirements/standards for prototypes ·Focusing the survey of IVOA (MG, CA ·Connecting specialist of IVOA standard (CJ, MG, CA, ·Connecting specialist of PDS standard (GoG [Martin Volwerk?], ·Anticipating the internal communication and progress updating system (FT, RH, GoS) ·Registry demonstrator (MG, CJ, ·Science demonstrator AMDA/MAPSKP (RH, NA, EP, EB, VG, CJ, MB, BC, ·Connection with aurora images (HST, FUSE, ground…), NA, …  AMDA  Use cases ·Connection AMDA/Graz ? (FT, RH, EB, VG, CJ, NA,  ASPERA (EB, ·Analysis of several use cases? Diagnostic of user requirements versus existing standards. CA, Christophe ArvisetGoG: Ghost of GrazGoS: Ghost of Scientist

Use cases %What do we expect from use case analysis - User requirement specifications % How many cases? -For now, only one: Solar wind/Jupiter (Saturn) magnetosphere interaction -Sufficient in regards to the IDIS challenges? % If not, which ones? %The method for use case analysis? %How to formulate the results? - example: SPASE standard

Plasma study use cases J’attends vos propositions

Comparative planetary study use cases  Normalizing tools  Models  Space weather input  Instrumental/observatory comparison tools Ferrier et al. H+H+ O+O+ VENUSMARS  Multi observatory data  Multi-instrument data

Heliophysics studies Connection to HELIO (FP7 proposal)

An example: a study of interplanetary shock propagation by R. Prangé

Used resources  SOHO LASCO + EIT  FUV HST  Radio GALLILEO  Radio CASSINI  POLAR VIS  IMAGE FUV  Versatile Advection Code + ACE data

Use cases on global planetary study %Radio/plas/mag/atm/dust/gravité  saturn rotation determination %Surf/plas  Mercury surface/magnetosphere interaction Aurores/mars (radio, atm, surf, plas, model-transcar, imagerie-) %Helio/plan.plas  Heliospheric constellation %Atm/plas  Taranis %Kcnlkn %*clkjezncklznlnc J’attends vos propositions

Inter-Node use cases? Small bodies / plasmas: comets, Rosetta anticipation, Giotto experience Surface/Atmosphere/Plasmas: Martian aurora, Io, satellite driven Jupiter aurora Surface/Plasmas: Mercury, Ganymede, Encelade Atmosphere/Plasmas: Aurora (Saturn, Jupiter), Venus airglow, Titan, Ion escape at Mars/Venus

Use case analysis  Goals: -Specify/recommend the content of the data model -Specify/recommend an architecture  Global method: First a prototype study for validating the method. -(1) Extracting user requirements from use case analysis Formulating the results -(2) Defining an information system (data model + architecture) -(3) Scenarii for performing the user studies using the defined system and identifying the inconsistencies, bugs, etc… -Then, iterating (2) and (3)  Practical approach: - (i) starting from SPASE and see what it is needed and missing - (ii) the same for IVOA, (iii) and PDS?  Recommendation

Prototype use case: ■ EuroPLANET selected use case: Campaign in 2004 (or 2006, 2007) approach of CASSINI toward Saturn CASSINI data, HST images (external from IDIS or atmosphere node?), models, … ■ The R. Prangé study on interplanetary shock propagation Starting point Selecting other use cases?

Buts de la réunion d’aujourd’hui Débroussaillage des prototype use cases Comment enrichir la use case analysis? Qui participe à quoi? Qui est responsable de quoi? Comment on s’organise?

The use case selected by the EuroPLANET expert group Solar wind/Jupiter (Saturn) magnetosphere interaction

Data used